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I. OVERVIEW

This lecture will complete our description of curvature tensors. In particular, we will build the Einstein tensor Gµν

that occupies the left-hand side of the field equations of general relativity. We will also prove two very important
results:

• The Einstein equation is divergenceless, Gµν
;ν = 0.

• Any spacetime with zero Riemann tensor is (at least locally) equivalent to flat spacetime.

II. BUILDING THE EINSTEIN TENSOR

In electrodynamics, we found that Maxwell’s equation Fµν
,ν = 4πJµ implied the local conservation of charge:

Jµ
,µ = 0. Equivalently, we formed a tensor Fµν

,ν out of the field strength tensor that (i) was of the appropriate type
to equal a current – i.e. it had rank 1 – and (ii) was divergenceless regardless of the nature of the field (i.e. for any
antisymmetric rank 2 tensor Fµν). We want to do the same for gravity. In the case of gravity, we have a “source”
that is the stress-energy tensor, T µν , that is divergenceless if energy and momentum are locally conserved:

T µν
;ν = 0. (1)

It therefore seems natural for us to try to build a rank 2 symmetric tensor Gµν , constructed geometrically on a
differentiable manifold with metric, that automatically satisfies

Gµν
;ν = 0. (2)

We will then be able to write a field equation G = κT, where κ is some proportionality constant (the analogue of 4π
in E&M).

We already know of one divergenceless rank 2 symmetric tensor: the metric tensor itself. However we can’t possibly
write an equation like g = κT since in empty flat spacetime T = 0 but g 6= 0. So we need to find a curvature tensor.
The Riemann tensor is a place to start, but it has 4 indices, not 2. Thus we need to find a way to construct the
tensor G that we seek algebraically out of the Riemann tensor. To do this, we need to consider the Riemann tensor’s
derivative properties.

A. First Bianchi identity

The covariant derivative of the Riemann tensor is the rank 5 tensor Rα
βγδ;ǫ. It is most convenient to prove theorems

about this if we write this in a local Lorentz frame at point P . Thus at P all Γ’s are zero, so we may replace the
semicolon by a comma:

Rα
βγδ;ǫ(P) = (Γα

βδ,γ − Γα
βγ,δ + Γα

νγΓν
βδ − Γα

νδΓ
ν

βγ),ǫ. (3)

Since the Γ’s are zero at P , the derivatives of their products are zero (think of the product rule), so in the local
Lorentz frame:

Rα
βγδ;ǫ(P) = Γα

βδ,γǫ − Γα
βγ,δǫ. (4)
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It now follows that if we completely antisymmetrize in the last 3 indices [γδǫ], then the partial derivatives on the
right-hand side become zero (remember that partial derivatives commute):

Rα
β[γδ;ǫ](P) = 0. (5)

Since we now have a tensor on both sides this is valid in any coordinate system. Therefore the particular combination
of the Riemann tensor derivatives is zero.

B. Ricci tensor

Now that we know something about the derivatives of the Riemann tensor it’s time to start building rank 2 versions
thereof. The easiest way to build a rank 2 tensor from the Riemann tensor is via contraction. This gives the Ricci

tensor:

Rµν = Rα
µαν . (6)

(Other possible contractions are equivalent or are automatically zero by symmetry, e.g. Rα
αµν = 0.) This is a

symmetric rank 2 tensor. It even has its own contraction, known as the Ricci scalar:

R = Rβ
β = Rαβ

αβ. (7)

Is the Ricci tensor the divergenceless object we seek? Unforunately no, as we can see by contracting the first Bianchi
identity. Using the antisymmetry of the Riemann tensor on the last two indices, we can write Eq. (5) as

Rα
βγδ;ǫ + Rα

βδǫ;γ + Rα
βǫγ;δ = 0, (8)

or if we contract on the 1st and 3rd indices:

Rβδ;ǫ + Rα
βδǫ;α + Rα

βǫα;δ = 0. (9)

Using the antisymmetry of the Riemann tensor we can manipulate the last term into

Rβδ;ǫ + Rα
βδǫ;α − Rβǫ;δ = 0. (10)

If we now contract on β and ǫ, we find

Rβ
δ;β + Rαβ

δβ;α − R;δ = 0. (11)

The symmetries of the Riemann tensor tell us that Rαβ
δβ = Rβα

βδ = Rα
δ, so

Rβ
δ;β + Rα

δ;α − R;δ = 0 (12)

or

Rα
δ;α =

1

2
R;δ. (13)

So it turns out that the Ricci tensor is in general not divergenceless. Therefore we do not want to set it equal to T.

C. Einstein tensor

This deficiency of the Ricci tensor as an object to put on the left-hand side of the field equation is however easily
repaired. Recall that the metric tensor has zero covariant derivative. Therefore if we define the rank 2 symmetric
Einstein tensor

Gµν = Rµν −
1

2
Rgµν , (14)

we see that

Gα
δ;α = Rα

δ;α −
1

2
R;αgα

δ =
1

2
R;δ −

1

2
R;δ = 0. (15)
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We thus learn that the Einstein tensor has zero divergence. It is therefore appropriate for us to expect a relation
such as

Gµν = κT µν (16)

for some constant κ (which will turn out to be 8π in units where Newton’s gravitaitonal constant is unity).
We will look at the structure of GR much more in the future, but you can see already that Gµν has 10 components,

which are linear combinations of the 20 components of Rαβγδ. These 10 components of the curvature of spacetime
are determined locally by the matter content. The other 10 components are determined nonlocally, through the fact
that a single metric tensor gµν generates all of the Riemann tensor.

III. SPACETIME WITH ZERO RIEMANN TENSOR IS FLAT

Thus far we have referred to the Riemann tensor as the “curvature” of spacetime. But what we haven’t done yet is
prove that the Riemann tensor contains all of the information about curvature. More precisely: suppose we consider
a spacetime M with some messy metric gµν(xα), but with zero Riemann tensor. Is it necessarily true that it is flat
spacetime? In this section we will prove that the answer is yes. We will do so by first constructing a special type of
coordinate system – Riemann normal coordinates – and then showing that for zero Riemann tensor this coordinate
system is that of ordinary Minkowski spacetime.

A. Riemann normal coordinates

[Note: You can read at this point MTW §11.6. While formally “Track 2,” we have covered enough background for
it.]

Let us consider a point P on a manifold, and suppose that we have constructed locally Lorentz coordinates at that
point, i.e.

xα(P) = 0, gαβ(0) = ηαβ , and gαβ,γ(0) = 0. (17)

This is only a local Lorentz frame, and we have said nothing yet about the higher partial derivatives of gαβ (or
equivalently about the higher order terms in the Taylor expansion of x). Indeed these are not uniquely specified.
We can however build a special primed coordinate system as follows. Given any vector v based at P , let’s launch a
geodesic G(λ; v) from P with

G(0; v) = P and
d

dλ
G(λ; v)

∣

∣

∣

∣

λ=0

= v, (18)

or in coordinate language

xµ(0; v) = 0 and
dxµ

dλ
(λ = 0; v) = vµ. (19)

The geodesic can be evolved to any other value of λ by using the 2nd order ODE for xµ(λ). In particular, we can
evolve to λ = 1, and thus find a mapping from vectors at P to positions in the manifold M:

v 7−→ G(1; v). (20)

In words, this says: “Start at position P and with velocity v; move along with zero acceleration for unit time; and
then where you end up is G(1; v).” As long as one is in a small portion of the manifold such that this mapping remains
one-to-one, we may define a coordinate system by assigning the components vµ as the new (primed) coordinates of
the point G(1; vµ):

xα′

[G(1; v)] = δα′

µ vµ. (21)

Such a coordinate system is called a Riemann normal coordinate system.
We may study the general properties of Riemann normal coordinates. In particular, we may do a Taylor expansion

of the geodesics:

xµ[G(0; v)] = 0,
dxµ

dλ
[G(0; v)] = vµ, and

d2xµ

dλ2
[G(0; v)] = 0. (22)



4

Therefore, doing a Taylor expansion in λ (or equivalently in v):

xµ(xα′

) = vµ + O(x′3) = δ
µ
α′x

α′

+ O(x′3). (23)

By converting the metric tensor to the primed coordinates, we find that

gα′β′(0) = ηα′β′ , and gα′β′,γ′(0) = 0. (24)

B. The metric in Riemann normal coordinates for the case where the Riemann tensor is zero

What are the general properties of the metric in Riemann normal coordinates? To answer this question, let’s take
any point and construct the coordinate basis vector. The eα′ basis vector is defined as the derivative of position with
respect to the xα′

coordinate, or

eα′ = δ
µ
α′

∂

∂vµ
G(1, vµ). (25)

Then a general vector w based at G(1, vµ) is expressed in terms of its components w = wα′

eα′ , or

w = wα′

δ
µ
α′

∂

∂vµ
G(1, vµ). (26)

Note that w is expressed in terms of the infinitesimal displacement of geodesics. If we write the vector field ξ(λ) as
the infinitesimal separation vector of two geodesics originating from P but with initial velocities vµ and

vµ + δvµ = vµ + wα′

δ
µ
α′ , (27)

then we have ξ(1) = w.
If the Riemann tensor vanishes, then the geodesic equation gives us

D2ξ(λ)

dλ2
= 0. (28)

We then find that

d3

dλ3
(ξ · ξ) = 2ξ ·

D3ξ

dλ3
+ 2

Dξ

dλ
·
D2ξ

dλ2
= 0, (29)

so ξ · ξ is a 2nd order polynomial in λ:

ξ · ξ = a + bλ + cλ2. (30)

However, we may compute these coefficients via a Taylor expansion. We know that

ξµ = wα′

δ
µ
α′λ + O(λ2), (31)

and so

ξ · ξ = gµνξµν = ηµνwα′

δ
µ
α′w

β′

δν
β′λ2 + O(λ3). (32)

The λ3 and higher terms must vanish for a quadratic polynomial, so we conclude that

ξ · ξ = ηα′β′wα′

wβ′

λ2 (33)

and hence

w · w = ηα′β′wα′

wβ′

. (34)

Thus we conclude that the metric tensor in the primed coordinates is simply ηα′β′ and hence the Riemann normal
coordinate system is that of special relativity.

[Exception: We have only shown that Rαβγδ = 0 implies that spacetime is flat in some finite region around any
point. In particular, we have not proven that the global structure or topology of spacetime is that of M

4 – indeed, it
may not be.]


