
Lecture VI: Tensor calculus

Christopher M. Hirata
Caltech M/C 350-17, Pasadena CA 91125, USA∗

(Dated: October 14, 2011)

I. OVERVIEW

In this lecture, we will begin with some examples from vector calculus, and then continue to define covariant
derivatives of 1-forms and tensors.

The recommended reading for this lecture is:

• MTW §8.5–8.6.

[Note: actually a lot of what we’re doing in class is working through the exercises in §8.5.]

II. A WORKED EXAMPLE: VECTOR CALCULUS IN POLAR COORDINATES

In this section, we will do some examples from vector calculus in polar coordinates on R
2. This is a simple case,

but should be useful to exercise the machinery. Recall that the metric tensor components were

grr = 1, gθθ = r2, and grθ = gθr = 0, (1)

and the inverse metric is

grr = 1, gθθ =
1

r2
, and grθ = gθr = 0. (2)

The coordinate basis vectors er and eθ are not orthonormal, but we may define an orthonormal basis via

er̂ = er and e
θ̂

=
1

r
eθ. (3)

A. Christoffel symbols

We begin by computing the Christoffel symbols for polar coordinates. The only nonzero derivative of a covariant
metric component is

gθθ,r = 2r. (4)

Now returning to the general rule,

Γǫ
δη =

1

2
gǫτ (−gδη,τ + gητ,δ + gδτ,η), (5)

we can directly read off the Christoffel symbols. They are:

Γr
rr = 0,

Γr
θr = Γr

rθ = 0,

Γr
θθ =

1

2
grr(−gθθ,r) =

1

2
(1)(−2r) = −r,

Γθ
rr = 0,

Γθ
rθ = Γθ

θr =
1

2
gθθ(gθθ,r) =

1

2
(r−2)(2r) =

1

r
, and

Γθ
θθ = 0. (6)
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So of the 6 Christoffel symbols, only 2 are nonzero. This is typical of highly symmetrical manifolds (expressed in
coordinates that use the symmetry).

B. Covariant derivative of a vector field

Let’s now find the covariant derivative of a vector field v. Using the rule from the last section,

vα
;β = vα

,β + Γα
βγvγ . (7)

Component by component, this reads

vr
;r = vr

,r,

vr
;θ = vr

,θ − rvθ ,

vθ
;r = vθ

,r +
1

r
vθ, and

vθ
;θ = vθ

,θ +
1

r
vr. (8)

The divergence of a vector field is

∇ · v = vr
;r + vθ

;θ = vr
,r + vθ

,θ +
1

r
vr. (9)

C. Examples of vector fields and their properties

Consider the vector field v that points in the 1-direction of the original Cartesian coordinate system (v = e1). It
can be expressed in terms of its components in the orthonormal basis

vr̂ = cos θ, vθ̂ = − sin θ; (10)

or in the coordinate basis,

vr = cos θ, vθ = −
1

r
sin θ. (11)

You know intuitively that this vector field is “constant,” but that is not obvious in the polar coordinate system. We
can still prove it, however, using Eq. (8):

vr
;r = vr

,r = 0,

vr
;θ = vr

,θ − rvθ = − sin θ − r(−
1

r
sin θ) = 0,

vθ
;r = vθ

,r +
1

r
vθ =

1

r

2

sin θ +
1

r
(−

1

r
sin θ) = 0, and

vθ
;θ = vθ

,θ +
1

r
vr = −

1

r
cos θ +

1

r
cos θ = 0. (12)

As a less trivial example, we can search for an axisymmetric radial vector field E (Eθ = 0, Er depends only on r
and not θ) with zero divergence (except at the origin): ∇ · E = 0. Equation (9) tells us that we need

0 = Er
,r + 0 +

1

r
Er. (13)

Since sr depends on r, we may then write

d

dr
(rEr) = rEr

,r + Er = 0. (14)

Therefore E r̂ = Er ∝ r−1. You may recognize this as the result that the electric field of a linear charge scales as 1/r.
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III. COVARIANT DERIVATIVES OF TENSORS

Having found a way to differentiate a vector (i.e. a rank
(

1

0

)

tensor) in curved spacetime and generate a rank
(

1

1

)

tensor, we now ask whether there is a way to differentiate general tensors in curved spacetime. The answer is yes, and
fortunately there is no new messy algebra: the same Christoffel symbols we’ve worked with will suffice for tensors.

A. Covariant derivative of a 1-form

To warm up, let’s try taking a 1-form – i.e. a rank
(

0

1

)

tensor – and finding its covariant derivative, a rank
(

0

2

)

tensor.
We could repeat the work we did for vectors, going to a local Lorentz coordinate system, taking the derivatives, and
going back to the original space. There is however an easier way: we may use the vector-to-1-form correspondence.

Given a 1-form kµ, we know how to associate it with a vector kα = gαµkµ. Then we will find the covariant derivative
of the 1-form by lowering the indices of kα

;β :

kν;β ≡ gναkα
;β. (15)

Let’s evaluate this explicitly:

kν;β ≡ gναkα
;β

= gνα(gαµkµ);β

= gνα[(gαµkµ),β + Γα
βγgγµkµ]

= gνα

[

gαµ
,βkµ + gαµkµ,β +

1

2
gαδ(−gβγ,δ + gβδ,γ + gγδ,β)gγµkµ

]

= gναgαµ
,βkµ + kν,β +

1

2
(−gβγ,ν + gβν,γ + gγν,β)gγµkµ. (16)

As an aside at this point, we note that

gναgαµ
,β = (gναgαµ),β − gνα,βgαµ = (δµ

ν ),β − gνγ,βgγµ = −gνγ,βgγµ. (17)

Therefore our covariant derivative of a 1-form satisfies

kν;β = kν,β +
1

2
(−gβγ,ν + gβν,γ − gγν,β)gγµkµ = kν,β − Γµ

βνkµ. (18)

So we find the remarkable result that the covariant derivative of a 1-form is given by the partial derivative,

but corrected by a Christoffel symbol. This is the same Christoffel symbol we found for vectors, but note the −
sign and the differently placed indices.

If we take the directional covariant derivative of a basis 1-form, we find

(∇eβ
ω

α)ν = (ωα)ν;β = −Γα
νβ , (19)

or equivalently

∇eβ
ω

α = −Γα
νβω

ν . (20)

B. Covariant derivative of a general tensor

We are now ready to define the covariant derivative of a general tensor. Since we define covariant derivatives by
reference to a local coordinate system where the covariant derivative becomes a partial derivative, it should satisfy a
product rule. For example, if we take a tensor S of rank

(

2

2

)

, we have

S = Sαβ
γδeα ⊗ eβ ⊗ ω

γ ⊗ ω
δ. (21)

To find the covariant derivative, we remember that

∇eµ
eα = Γν

αµeν . and ∇eµ
ω

α = −Γα
νµω

ν , (22)
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so then

∇eµ
S = Sαβ

γδ,µeα ⊗ eβ ⊗ ω
γ ⊗ ω

δ

+Sαβ
γδ∇eµ

eα ⊗ eβ ⊗ ω
γ ⊗ ω

δ + Sαβ
γδeα ⊗ ∇eµ

eβ ⊗ ω
γ ⊗ ω

δ

+Sαβ
γδeα ⊗ eβ ⊗ ∇eµ

ω
γ ⊗ ω

δ + Sαβ
γδeα ⊗ eβ ⊗ ω

γ ⊗ ∇eµ
ω

δ. (23)

Plugging in the relations for the covariant derivatives of vectors and 1-forms, we find

∇eµ
S = Sαβ

γδ,µeα ⊗ eβ ⊗ ω
γ ⊗ ω

δ

+Γν
αµSαβ

γδeνeα ⊗ eβ ⊗ ω
γ ⊗ ω

δ + Γν
βµSαβ

γδeα ⊗ eν ⊗ ω
γ ⊗ ω

δ

−Γγ
νµSαβ

γδeα ⊗ eβ ⊗ ω
ν ⊗ ω

δ − Γδ
νµSαβ

γδeα ⊗ eβ ⊗ ω
γ ⊗ ω

ν . (24)

We may find the components of the right-hand side by relabeling indices:

∇eµ
S = [Sαβ

γδ,µ + Γα
νµSνβ

γδ + Γβ
νµSαν

γδ − Γν
γµSαβ

νδ − Γν
δµSαβ

γν]eα ⊗ eβ ⊗ ω
γ ⊗ ω

δ (25)

The object in brackets is then the αβ
γδµ component of the rank

(

2

3

)

tensor ∇S. Therefore it is the component of the
covariant derivative of S:

Sαβ
γδ;µ = Sαβ

γδ,µ + Γα
νµSνβ

γδ + Γβ
νµSαν

γδ − Γν
γµSαβ

νδ − Γν
δµSαβ

γν . (26)

The rules are quite general: one takes the partial derivative, and then writes down a correction term for each index.
Each correction term is of the form “ΓS” and satisfies the following rules: (i) the differentiation index always appears
in the last slot; (ii) the index being corrected moves over to Γ in either the up or down position as appropriate; (iii)
one fills the two empty slots with a summed dummy index; and (iv) “up” indices get a + sign and “down” indices
get a − sign. Covariant differentiation is somewhat mechanical, just like differentiation in freshman calculus.

C. Some more properties

There are a variety of useful properties of covariant derivatives that one can prove. Here is a sampling.

1. The covariant derivative of the contraction is the same as the contraction of the covariant derivative

In the local Lorentz coordinate frame established at any point P , this is obvious. But let’s try proving it explicitly:
let’s take a rank

(

1

1

)

tensor S and find the contraction of its covariant derivative:

Sα
α;β(derivative then contraction) = Sα

α,β + Γα
γβSγ

α − Γγ
αβSα

γ

= Sα
α,β = (Sα

α),β

= Sα
α;β(contraction then derivative). (27)

The cancellation of the Γ-containing corrections is general for tensors of higher rank. So contraction and covariant
derivative commute, and in the future we will simply write Sα

α;β without ambiguity.

2. The covariant derivative of the metric tensor is zero

This is also obvious in the local Lorentz coordinate frame. But we can prove it explicitly:

gαβ;γ = gαβ,γ − Γµ
αγgµβ − Γµ

βγgαµ

= gαβ,γ −
1

2
gµν(−gαγ,ν + gαν,γ + gγν,α)gµβ −

1

2
gµν(−gβγ,ν + gβν,γ + gγν,β)gαµ

= gαβ,γ −
1

2
(−gαγ,β + gαβ,γ + gγβ,α) −

1

2
(−gβγ,α + gβα,γ + gγα,β)

= 0. (28)
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3. The covariant derivative of the inverse-metric tensor is zero

Once again: obvious in the local Lorentz coordinate frame. But there is a mathematical proof. Consider the rank
(

1

1

)

“identity” tensor I that takes in a 1-form and vector and returns their contraction:

I(k̃, v) = 〈k̃, v〉. (29)

The components are easily seen to be Iα
β = δα

β (they are the same in any coordinate system!). We know that

Iα
β;γ = δα

β,γ + Γα
µγδµ

β − Γµ
βγδα

µ = 0. (30)

But since gαβ is the matrix inverse of gαβ , we have Iα
β = gανgνβ. Taking the covariant derivative, and recalling

that covariant differentiation commutes with contraction:

Iα
β;γ = gαν

;γgνβ + gανgνβ;γ . (31)

The left-hand side is zero, gνβ;γ = 0, and so we are left with the conclusion that gαν
;γgνβ = 0. Since gνβ forms an

invertible matrix, we can conclude that gαν
;γ = 0.

4. The covariant derivative commutes with raising and lowering of indices

Since the raising and lowering of indices involves the outer product with the metric tensor (or its inverse), followed
by contraction, this statement is a corollary of the preceding ones.


