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I. OVERVIEW

In this lecture, we will consider the spatial distribution of energy and momentum and their transport and conserva-
tion laws. The key new object that we will construct is the stress-energy tensor 7}, — the right-hand side of Einstein’s
equation.

The recommended reading for this lecture is:

o MTW §5.1-5.7.

II. THE STRESS-ENERGY TENSOR

Consider a system containing matter, radiation, etc. observed in a particular Lorentz frame {eg, e1,ez,e3}. We
will study here the features of conservation of energy-momentum (a vector quantity). As a warmup, first it is worth
recalling the conservation of (scalar) charge.

A. Charge

We learned in the lecture on E&M that one could construct a 4-vector J* consisting of the charge density (p = J' )
and the current density (J*). For a point particle, this is

J¢ = /eu“6(4) [x# — y* (7)) dT (1)
and hence is Lorentz invariant; the “341” expression is
JOt, z%) = ed® [zt —yi(t)] and JE(t, ") = e PR [z — yi(1)]. (2)
This was conserved in the local sense that
J o =p+J;i=0. (3)
Alternatively, if one tries to define a total charge
Q) = [ sltat) s (4)
R3
then its time derivative is

O(t) :/RS ot o) ot = —/RS TE ot 2 P =0, (5)

where the last statement is Gauss’s divergence theorem (with boundary at infinity). So the total charge is globally
conserved.
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B. Energy-momentum

We can repeat the same exercise for conservation of energy and momentum. Given a particle we may construct its
4-current density of 4-momentum, 77

TB — /pﬁua5(4) [x# — yH (7)) dr. (6)

It can be broken down into densities and fluxes of 4-momentum:
T, 2") = p?6@ [’ — ' ()] and T(t,2%) = p® PFs@ 2’ — ¢ (1)). (7)

This tensor is called the stress-energy tensor. In “34+1” terminology, and in full generality (i.e. if we consider energy
and momentum carried by fields as well as particles), the stress-energy tensor contains:

o The energy density: T.

e The energy fluz in the i-direction: T%.

e The 3-momentum density: T (this is the density of momentum component 7).

e The 3-momentum fluz (or “stress”): T (this is the flux in the j direction of momentum component 7).

The stress-energy tensor has 16 components, but we will see later that it is symmetric and only 10 are physical.
The usual statements about charge are equally valid for 4-momentum. It is conserved in the local sense that

TP =T 4 7P% = 0. (8)
Alternatively, if one tries to define a total 4-momentum
PA(t) = / T, ') d 9)
R3
then its time derivative is

P%):/W T, 2) dPa = —/W T (1, 2) o = 0, (10)

where again the last statement is Gauss’s divergence theorem (with boundary at infinity). So the total 4-momentum
is globally conserved.

III. EXAMPLES OF STRESS-ENERGY TENSORS
A. Example I: Perfect fluid

A perfect fluid in its rest frame has an energy density p and a pressure p. By isotropy, it carries zero energy flux
and has zero momentum density. To compute the 3-momentum flux, we note that the flux of 1-momentum in the
1-direction is the momentum carried per unit time per unit area, i.e. the force per unit area p. This is the same as
the flux of 2-momentum in the 2-direction, etc., so

p 000
0p 00

ba_ | 0 p

™=100po0 (11)
000 p

Equation (11) can be generalized to any frame by writing the right-hand side as a tensor. If the fluid has 4-velocity
u, then we find

TP = puPu® + p(g°* + v u®). (12)
This is in component notation; in terms of tensor operations it is

T=pu@u+plgtu®u)=(p+pudu+pg. (13)



B. Example II: Gas of noninteracting particles

Consider a gas composed of weakly or noninteracting identical particles each of mass m that do not form a perfect
fluid (e.g. a real gas of atoms whose separation is many times the mean free path). They have a phase space density
f(x%, p;; t) which is the number of particles per unit volume in 3-position space per unit volume in 3-momentum space.
The density of energy-momentum is

T = /f(a?i,pj; t)p” d’p; (14)
(valid in a Lorentz frame). The flux contains an additional factor of 3-velocity v* = u®/u® = p* /p°,

k
i p
TPk = /f(a? ,pj;t)p° ngpj- (15)

These equations can be combined into

3.
o = /f(xi pyit)pp L (16)
sy po .

A useful fact (and good homework exercise!) is to prove that f(z?,p;;t) and d®p; /p° are individually Lorentz invariant.
(In particle physics the latter sometimes goes by the name of “Lorentz invariant phase space.”)

IV. SYMMETRY OF THE STRESS-ENERGY TENSOR

The stress-energy tensor must be symmetric. The standard way to prove this is to consider an infinitesimal cube of
material of side length £. What happens to it if the stress tensor is asymmetric, 712 # T2'? Then let’s consider the
3-component of the torque on the cube. This comes from four faces, pointed in the +1, +2, —1, and —2 directions:

73 = [13] 41 + [T3]42 + [13]-1 + [73] -2
(=T?M0%)(€/2) — (=T20*)(£/2) + (T?")(—£/2) — (T*?)(—£/2)
= (T" —T%)3. (17)

However the moment of inertia of the cube is % pl®. Therefore in the limit that £ — 0%, the cube undergoes an infinite
angular acceleration unless 72! = T'2. Application of this argument in all reference frames guarantees a symmetric
stress-energy tensor.

V. ENERGY OF THE ELECTROMAGNETIC FIELD

Not all energy-momentum is carried by particles. Some of it is associated with fields, and chief among these is the
electromagnetic field Fyg.

A. Construction of the stress-energy tensor

We may build the stress-energy tensor by considering first the energy density of the field. In undergraduate physics
you learned that this was
1
8w

The challenge is to turn this into a full stress-energy tensor. We work in the frame of an observer with 4-velocity w.
The electric field seen by the observer is

p (E*> + B?). (18)

Eg = Fgaua (19)
(this has zero time component). So it follows that

E? = Fau®FP ). (20)



Furthermore, inspection of components of the field tensor shows that
F5pF%F = —2(E? — B?) (21)
and so
1
B? = Fau®FP uY + §F5@F55 : (22)
Putting these together, and inserting a factor of —g.,u“u” = 1, gives the energy density

1 1 .
p= yp <FﬁaF5,Y — ZFMFMQOW) u®u”. (23)

Since in general p = T u“u?, and T is symmetric, the above relation can hold for all rest frames only if

1

T i

1
Ty (FMFﬁ7 - ZFMF‘W gM) : (24)

B. Implications

Equation (24), derived solely from the electromagnetic energy density, immediately implies several familiar facts
from undergraduate physics.

Let us first consider the energy flux (Poynting flux) in say the 1-direction. This is the T°' component of the
stress-energy tensor, or

1 1 1
T = —F"FP = —(R°F* + F°F3) = — (E*B® — E*B?). 25
s P+ BET) = ) (25)
If the energy flux forms a 3-vector S?, then this is the 1-component of the equation

1

Next let’s consider the stress tensor. We’ll consider the 7' component, i.e. the flux of 1-momentum carried in the
1-direction. This is

— o [P R 5 - B
_ % [(E2) + (B%) + (B + (B%)? — (E')® - (B')*]. &0

So one can see that electric or magnetic fields exhibit positive stress (i.e. they “push”) perpendicular to field lines,
and exhibit negative stress (i.e. they “pull”) parallel to field lines.



