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I. OVERVIEW

In this lecture we will continue to develop tensor calculus and apply it to the formulation of Maxwell’s equations
in flat spacetime.

The recommended reading for this lecture is:

• MTW Ch. 3.

II. MORE TENSOR OPERATIONS

Last time we defined general tensors as linear machines, and described how to raise and lower their indices (i.e.
change whether they accepted vectors or 1-forms as inputs). But so far we haven’t defined general tensor operations.

A. Outer product

Given two tensors A and B of rank
(

M
N

)

and
(

P
Q

)

, we can define the outer product (or “tensor product”) to be the

tensor A⊗ B with

(A⊗B)(k̃, ...u, l̃, ...v) = A(k̃, ...u)B(l̃, ...v). (1)

It is trivial to see that this is in fact a tensor – it is linear in each input. Its components are

(A⊗B)α1...αM
β1...βN

γ1...γP
δ1...δQ

= Aα1...αM
β1...βN

Bγ1...γP
δ1...δQ

. (2)

This is the generalization to tensors of arbitrary rank of taking two column vectors u and v and making a matrix
uv

T.

B. Gradient of a tensor

We have already defined the gradient of a scalar f , which is a 1-form df . More explicitly, the gradient of a scalar
is a linear machine that takes a vector – a “velocity” v = dP/dλ, located at P(λ = 0) – and returns the scalar:

df(v) =
d

dλ
f [P(λ)]

∣

∣

∣

∣

λ=0

= lim
ǫ→0

f [P(ǫ)] − f [P(0)]

ǫ
. (3)

Its components are the partial derivatives,

(df)α =
∂f

∂xα
. (4)

Note that the rank of the gradient is 1 more than the rank of the object on which it acts. In this case, a scalar,
formally a tensor of rank

(

0
0

)

, is turned into a tensor of rank
(

0
1

)

.
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We can analogously define the gradient of a tensor S of any rank. For example, if S has rank
(

1
1

)

(components
Sα

β), we write

∇S(k̃, u, v) =
d

dλ
S[P(λ)](k̃, u)

∣

∣

∣

∣

λ=0

= lim
ǫ→0

S[P(ǫ)](k̃, u) − S[P(0)](k̃, u)

ǫ
, (5)

where k̃ is a constant 1-form and u is a constant vector. Again there is one new slot: S had rank
(

1
1

)

and ∇S has

rank
(

1
2

)

. Using the chain rule, we can write this in component form as

(∇S)α
βγkαuβvγ =

d

dλ
(Sα

βkαuβ) = vγ ∂Sα
β

∂xγ
kαuβ =

∂Sα
β

∂xγ
kαuβvγ . (6)

Therefore the components of the gradient ∇S are the partial derivatives of the components of S. Partial derivatives
are used so often that we have a special notation for them: the comma,

∇γSα
β = (∇S)α

βγ =
∂Sα

β

∂xγ
= Sα

β,γ . (7)

C. Contraction

Contraction is an operation that takes a tensor of higher rank
(

M
N

)

, with M ≥ 1 and N ≥ 1, and generating a

tensor of rank
(

M−1
N−1

)

. It is a generalization of the matrix trace. For definiteness, let’s take a tensor S of rank
(

2
1

)

,

with components Sαβ
γ . Then its contraction on the first and third indices T is

T(l̃) ≡

3
∑

α=0

S(ωα, l̃, eα). (8)

(The operation of contraction can be applied to any pair of indices, one up and one down.) The components of the
contraction are

T β = T(ωβ) =

3
∑

α=0

S(ωα, ωβ , eα) =

3
∑

α=0

Sαβ
α = Sαβ

α. (9)

It can be shown (homework) that the contraction has the correct transformation properties under a change of basis.
A tensor with all indices up (or all down) can only be contracted by using the metric to lower (or raise) at least

one index.

D. Divergence

The divergence is a calculus operation that reduces the rank of a tensor by 1: if S has rank
(

M
N

)

then ∇ · S has

rank
(

M−1
N

)

. It involves taking a gradient and then a contraction, and hence can be defined on any (upper) slot of S.

So as an example, if S has rank
(

2
1

)

and we take the divergence on the first slot, then

(∇ · S)(l̃, v) =
3

∑

α=0

(∇S)(ωα, l̃, v, eα). (10)

In component language,

(∇ · S)β
γ = Sαβ

γ,α =
∂Sαβ

γ

∂xα
. (11)

E. Transpose

The transpose operation swaps input slots for a tensor, e.g. for rank
(

0
2

)

tensors one can define S to be the transpose
of T if

S(u, v) = T(v, u). (12)

In components, Sαβ = Tβα. This is such a simple operation that we normally don’t provide another symbol for the
transpose. Rather, we simply re-label the indices.
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F. Symmetrization and antisymmetrization

A tensor is said to be symmetric if interchanging the inputs to two slots does not change it value, e.g. S(u, v) =
S(v, u). (The metric tensor is symmetric.) Given any tensor T, it is possible to construct a symmetric tensor S by
linear combination with the transpose,

Sαβ =
1

2
(Tαβ + Tβα) = T(αβ). (13)

Similarly it is possible to construct an antisymmetric tensor,

Aαβ =
1

2
(Tαβ − Tβα) = T[αβ]. (14)

These operations are encountered so frequently that they have special symbols: () for symmetrization and [] for
antisymmetrization.

It is possible to symmetrize or antisymmetrize any number of indices in a tensor by permuting the indices in all
possible ways and averaging:

T(α1...αp) ≡
1

p!

∑

all permutations π of 1...p

Tαπ(1)...απ(p)
(15)

or

T[α1...αp] ≡
1

p!

∑

all permutations π of 1...p

±Tαπ(1)...απ(p)
, (16)

where for antisymmetrization the + or − sign applies depending on whether the permutation is even or odd (even or
odd number of swaps required to produce that permutation).

It is also possible to symmetrize or antisymmetrize a subset of the tensor indices.

G. Wedge product

The wedge product (or “exterior product”) is an outer product followed by complete antisymmetrization and mul-
tiplication by the number of indices. It is used most often on vectors and 1-forms.

In the case of vectors, we define a bivector to be an antisymmetric tensor of rank
(

2
0

)

and a trivector to be a

completely antisymmetric tensor of rank
(

3
0

)

. Then given vectors u and v, we may build a bivector,

u ∧ v = u ⊗ v − v ⊗ u, (17)

or in components

(u ∧ v)αβ = uαvβ − vαuβ = 2u[αvβ]. (18)

One may also build a trivector u ∧ v ∧ w,

(u ∧ v ∧ w)αβγ = 6u[αvβwγ]. (19)

[Exercise: prove that the wedge product is associative.]
Beware, however: not every bivector can be written as a single term u∧v. Linear combinations of these are allowed.
In general, in n-dimensional spacetime, you should be able to show that a bivector has n(n − 1)/2 independent

components, and a trivector has n(n − 1)(n − 2)/6 independent components.
A similar operation holds for 1-forms. We may define a p-form to be a fully antisymmetric tensor of rank

(

0
p

)

. The

wedge product of p 1-forms is a p-form. You should be able to prove that a p-form has n!/[p!(n − p)!] independent
components. Also, in n dimensions there is no such thing as a p-form with p > n (except for the trivial zero tensor).

III. ELECTRODYNAMICS IN SPECIAL RELATIVITY

[Reading: MTW §3.1, 3.3, 3.4]
We now use the tensor machinery we have built in order to write down the equations of electrodynamics.
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A. Lorentz force law

The standard force law of nonrelativistic electrodynamics is that a particle of mass m and charge e experiences a
force

m
d(3)

v

dt
= e((3)E + (3)

v × (3)
B). [nonrelativistic] (20)

In generalizing this to special relativity, one faces two difficulties: the above is not Lorentz invariant (one needs
to redefine both sides of the equation to give a fully invariant form) and we haven’t defined the cross product yet
(what is its 4D generalization?). We can accomplish both by recalling the definition of 4-acceleration a = du/dτ .
The electromagnetic force ma is also not a constant but must depend somehow on the electromagnetic field and the
4-velocity u. The simplest option (which also happens to work!) is to write

dpα

dτ
= maα = eFα

βuβ. (21)

Here Fα
β is a tensor – its components form a 4× 4 matrix that represents the linear operation that turns a 4-velocity

into the 4-force per unit charge. Equation (21) is manifestly invariant.
[One might worry about defining a tensor this way – didn’t we say a tensor took vector and 1-form inputs and

return a scalar? Yes, but the operation F that takes a vector to a vector F(u) is equivalent to an operation that takes
a 1-form σ and a vector u and returns the scalar 〈σ,F(u)〉 = Fα

βσαuβ.]
Naively, F has 16 independent components, which is trouble: the familiar electromagnetic field has only 6 (3 of

E, 3 of B). Fortunately, not all of these 16 components are truly independent. Recall that a particle’s 4-velocity is
normalized,

gαβuαuβ = −1. (22)

Then the force law tells us that

0 =
d

dτ
(gαβuαuβ) = 2gαβuαaβ =

2e

m
gαβuαF β

γuγ =
2e

m
Fαγuαuγ . (23)

Since this must be true for any normalized 4-velocity u, it follows that F must be antisymmetric. Therefore it only
has 6 components.

Inspection allows us to identify these 6 components by comparison to the nonrelativistic equations. If we consider
a slowly-moving particle with 3-velocity v (|v| ≪ 1), then to first order in v we have

u0 = 1, ui = vi. (24)

The spatial components of the force on the particle are then

dpi

dτ
= e(F i

0u
0 + F i

ju
j) = e(F i

0 + F i
jv

j). (25)

It then follows that the F i
0 = Fi0 are the components of the electric field Ei, and that the F i

j = Fij are the
components of the magnetic field,

Fij = (3)ǫijkBk, (26)

where (3)ǫijk is the 3D Levi-Cevita symbol (i.e. it is +1 if ijk = 123, 231, or 312; −1 if ijk = 132, 321, or 213; and 0
otherwise). Therefore the components of Fαβ are:

Fαβ =







0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0






. (27)

As one can see, the issue involving the cross product has been resolved by making the magnetic field part of an
antisymmetric tensor rather than a vector. The notion of a cross product as an antisymmetric operation on two
vectors that returns another vector is inherently 3-dimensional, but antisymmetric tensors extend to any number of
dimensions (including 4, which is our main concern in this class).
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B. Maxwell’s equations

The field equations of electrodynamics must relate the tensor Fαβ to a source term: the 4-current density Jα. The
4-current has time component J0 =charge density, and spatial components J i =3-current density. One can see that
these do indeed form a tensor: for a single particle traveling through spacetime along a worldline yi(t), the 4-current
density is

J0(t, xi) = eδ(3)[xi − yi(t)] and Jk(t, xi) = e (3)vkδ(3)[xi − yi(t)]. (28)

It is possible [homework] to combine these as:

Jα(xµ) = e

∫

uαδ(4)[xµ − yµ(τ)]dτ, (29)

which is manifestly Lorentz-invariant.
We are now faced with the task of writing a set of equations to relate the 6 components of the field with the 4

components of the source. Since there are more field components than sources, the field F must satisfy some relations
independent of the source. We will thus end up with two equations – one involving just the fields and the other
involving the sources. These may both be derived from a single component of the equations plus Lorentz invariance.

We already know of one of these: in first-year electrodynamics we learned that div B = 0. Written in components,

∂B1

∂x1
+

∂B2

∂x2
+

∂B3

∂x3
= 0. (30)

If we write this in terms of components, Eq. (27), we have

∂F23

∂x1
+

∂F31

∂x2
+

∂F12

∂x3
= 0. (31)

We wrote this equation for the purely spatial components but if we are to have a Lorentz-invariant theory we need
the more general equation to be true,

Fαβ,γ + Fβγ,α + Fγα,β = 0; (32)

or, more succinctly,

F[αβ,γ] = 0. (33)

Equation (33) looks daunting but since it is explicitly antisymmetrized on 3 indices, it has
(

4
3

)

= 4 algebraically
independent components. We have already seen one of these components, which gave div B = 0. To see the others,
consider the 012 component of this equation:

∂F01

∂x2
+

∂F12

∂x0
+

∂F20

∂x1
= 0, (34)

or

−
∂E1

∂x2
+

∂B3

∂t
+

∂E2

∂x1
= 0. (35)

This is the 3-component of the induction equation ∂tB + curl E = 0. Relativity unifies magnetic induction with the
absence of magnetic monopoles!

The other equation we need is the source equation. We start with Gauss’s law, div E = 4πρ (in cgs). In terms of
components of F, this says

∂F 01

∂x1
+

∂F 02

∂x2
+

∂F 03

∂x3
= 4πJ0. (36)

[Recall that F 00 = 0 and F 0i = −F0i.] This is the 0-component of the equation

Fαβ
,β = 4πJα. (37)

Again there are 4 nontrivial components of this equation. The spatial components give rise to Ampère’s law [see
homework].
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C. Automatic conservation of the source

The attentive reader will note that Maxwell’s equations give us 8 differential equations for 6 variables. Therefore
they are either redundant or overconstrained. It turns out that there is 1 redundant equation and 1 overconstraint.

The 1 redundant equation comes from Eq. (33): if we define Cαβγ = F[αβ,γ] then it follows from commuting partial
derivatives that

C[αβγ,δ] = 0. (38)

This is a single equation [it has
(

4
4

)

= 1 component] that is simply true mathematically for any F, so in fact there are
only 3 fully independent equations in Eq. (33).

There is also a single overconstraint. Let’s take the divergence of Eq. (37):

Fαβ
,βα = 4πJα

,α. (39)

Since F is antisymmetric, but the ordering of partial derivatives is irrelevant, the left-hand side of this equation is
zero (expanded in components, F 12

,21 will cancel against F 21
,12). Therefore

Jα
,α = 0. (40)

This is the law of conservation of charge, as one can see by writing it in components:

∂ρ

∂t
+

∂J1

∂x1
+

∂J2

∂x2
+

∂J3

∂x3
= 0. (41)

The conservation of charge is “automatic” in the sense of being implied by the field equations: if charge is not
conserved there is no solution!


