Ph 236 – Homework 8

Due: Friday, January 13, 2012

Note — This is a half-homework.

1. Conservation laws. [18 points]

(a) Consider a spacetime with a metric $g_{\mu\nu}$ that does not explicitly depend on $x^0 = t$. Show that the vector ξ^{μ} with contravariant components (1, 0, 0, 0) is a Killing field. Explain why in this case p_0 is conserved.

(b) Let's try an alternative, canonical derivation of the same conservation law. Consider a particle of mass μ and write down for it the action

$$S = -\mu \int d\tau,\tag{1}$$

where τ is proper time; the geodesics must be derivable from this action principle. Then it should have the Lagrangian

$$L = -\mu \frac{d\tau}{dt}.$$
(2)

Write this Lagrangian as a function of $x^i(t)$ and $\dot{x}^i(t)$. Use the standard canonical procedure to derive the Hamiltonian, and show that it leads to the conservation law $p_0 = \text{constant}$.

(c) For a particle moving in the nearly Newtonian spacetime,

$$ds^{2} = -(1+2\Phi)dt^{2} + (1-2\Phi)[(dx^{1})^{2} + (dx^{2})^{2} + (dx^{3})^{2}],$$
(3)

evaluate p_0 to lowest order, i.e. to order Φ in the potential and to second order in the velocity relative to the Newtonian coordinate system. If Φ is time-independent this should correspond to a conservation law – which one is it?