Ph 236 – Homework 6

Due: Friday, November 18, 2011

1. Gravitational wave detector. [10 points] MTW Exercise 18.5.

2. Riemann tensor in linearized gravity. [8 points] MTW Exercise 18.1.

3. Gravitomagnetism. [18 points]

In our derivation of Newtonian gravity, we assumed slowly moving sources, i.e. in the stress-energy tensor we kept terms of order ρ but dropped terms of order ρv . Now let us put the latter back: we will consider terms of order ρv (i.e. the momentum density ⁽³⁾S) but not those of order ρv^2 . You may continue to assume the source to be time-stationary, i.e. we are interested in considering the gravitational fields of rotating bodies (such as Earth!).

(a) In terms of ρ and S_i , and the inverse-Laplacian ∇^{-2} , find $\bar{h}_{\mu\nu}$ in the Lorentz gauge.

(b) Evaluate the Christoffel symbols Γ^{i}_{00} and Γ^{i}_{0j} outside the sphere. Show that the acceleration of an object relative to the coordinate system, i.e. d^2x^i/dt^2 , is of the form

$${}^{(3)}a = -\nabla\Phi + {}^{(3)}v \times {}^{(3)}B.$$
(1)

What is the "gravitomagnetic field" ${}^{(3)}B$, and how does it relate to ${}^{(3)}S$? [*Hint*: This should bear some resemblance to the generation of a magnetic field by a current distribution, but will **not** be identical.]

(c) Consider a uniform-density sphere of mass M and radius R, with $M \ll R$, centered at the origin. Suppose that it is in uniform rotation around the 3-axis, with angular velocity $\Omega \ll R^{-1}$ (so that the rotation is far from relativistic). Find, outside the sphere, both its gravitational potential Φ and the gravitomagnetic field.

(d) At an order of magnitude level, what is the ratio of the gravitomagnetic "acceleration" of a satellite in Earth orbit to the Newtonian acceleration?