
Ph 236 – Homework 18

Due: Friday, May 4, 2012

1. Properties of the electromagnetic field. [18 points]
Consider a free electromagnetic field generated by a 1-form potential A by the usual rule F = dA. The
electromagnetic field is gauge-invariant in the sense that one can add the gradient of a scalar χ to the
potential, A → A + dχ, with no effect on the field F .

We will take the 4 components Aµ(xα) as the quantities to be varied in the variational principle δS = 0.
The Lagrange density for the system is of the form

L = LGR + LEM + Lother matter + Lint, (1)

where LEM depends only on the electromagnetic field and the metric, Lother matter does not depend on the
electromagnetic field, and all terms that depend on both (i.e. describe interactions of electromagnetic fields
with other matter) are included in Lint.

(a) Suppose we take the usual electromagnetic Lagrange density LEM = − 1
16πFµνF

µν . Express the action
explicitly in terms of Aµ and the metric, and show that its contribution to the stress-energy tensor is

[T rel
EM]µν = 2(−g)−1/2 δSEM

δgµν
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is the usual stress-energy tensor.
(b) Now suppose that the interaction Lagrangian is of the form

Lint = AµJ
µ[ψ], (3)

where Jµ is called the current density and it depends on other matter fields ψ (e.g. point particles, charged
scalar fields, or anything else, but not explicitly on A). What is the equation of motion for Aµ?

(c) Now let us require that the total action be gauge invariant for arbitrary gauge transformation field
χ. What condition does this imply about the source J?

2. Dynamics of theories with higher derivatives in the action. [18 points]
In this problem, we will investigate theories in which the Lagrangian depends on the accelerations of particles
in addition to their coordinates and velocities.

(a) Consider a system with N degrees of freedom and a Lagrangian of the form

L = L(1)(q
I , q̇I) + L(2)A(qI)q̈A (4)

(here A is summed over 1..N). Show that the variation of the action δS/δqA(t) can be manipulated by
integration by parts, and thus reduced to a form containing only coordinates and velocities, and not accel-
erations.

Thus for “generic” functions L(1) and L(2) one arrives at a system of second-order ODEs for the qA, just
as in usual Newtonian physics. I impose the “generic” issue since there is a special class of functions L(1) and
L(2) for which this construction does not work – e.g. if we write a Lagrangian where there is no dependence
on the derivatives, but is still technically of the form Eq. (4).

(b) In order for the equations to yield a second-order system, i.e. to find q̈A as functions of {qI , q̇I},
the system must satisfy a non-singularity condition. Show that this condition is that the N ×N symmetric
matrix C defined by

CIJ =
∂2L(1)

∂q̇I ∂q̇J
−
∂L(2)J

∂qI
−
∂L(2)I

∂qJ
(5)

be nonsingular. [Hint: Write down the conjugate momenta pI derived from the construction in part (a).]
When we do this construction in GR, it will turn out that this non-singularity condition is not satisfied, and
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hence it is not possible to solve for the full evolution gµν(xα) given a set of initial conditions; this is related
to gauge degrees of freedom, which must be fixed externally and cannot be “solved for.”

(c) Now let us write down a Lagrangian nonlinear in the accelerations. An illustrative possibility is

L = L(1)(q
I , q̇I) +

1

2
L(2)AB(qI)q̈Aq̈B, (6)

where L(2)AB is symmetric. Show that the Euler-Lagrange equations generically lead to a fourth-order
system of ODEs. What is the non-singularity condition required for us to solve for ∂4

t q
A in terms of the

coordinates and the first 3 derivatives?
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