
Ph 236 – Homework 17

Due: Friday, April 27, 2012

1. Variational approach to universes with matter. [20 points]
This problem works through the Lagrangian derivation of the Friedmann equations, and then considers some
issues associated with the “total energy of the Universe” in cosmology. When we consider the variational
principle, we will focus only on variations that respect the FRW symmetry (inhomogeneous universes will
be considered later).

We will show next week that the action for general relativity is the Einstein-Hilbert action,

SEH =

∫

R

16π

√
−g d4x, (1)

where g denotes the determinant of the metric tensor, and R is the Ricci scalar.
(a) Show that

√
−g d4x is the differential proper 4-volume element.

(b) Using the Ricci scalar from the notes, show that for an FRW universe, if we consider the comoving
volume V , then the action may be written as an integral containing ä. Reduce this to a form containing at
most first time derivatives of a using integration by parts and throwing out surface terms to show that

SEH =
3

8π
V

∫

[

−aȧ2 + aK
]

dt. (2)

(c) Recall that the action for a point particle of mass µ is Spart = −µ
∫

dτ , where dτ is the differential of
proper time. Show that if these particles are at rest in the comoving frame, and there is a comoving density
ρ0, then this action reduces to

Spart = −ρ0V
∫

dt. (3)

We therefore conclude that in a universe with cold noninteracting particles, the total action is

S = V
∫

[

− 3

8π
aȧ2 +

3K

8π
a − ρ0

]

dt. (4)

(d) Show that if this action is varied with fixed t1, t2, a(t1), and a(t2), allowing the trajectory of a to vary
in between the initial and final times, that the Euler-Lagrange equation gives the second-order equation:

ä

a
= −1

2

(

ȧ

a

)2

− K

2a2
. (5)

Show that the Friedmann equations imply Eq. (5), but that Eq. (5) does not imply the Friedmann equations.

You will note that in part (d) we did not allow t1 or t2 to vary. In general relativity – unlike Newtonian
physics or even special relativity – the action should be stationary with respect to variations where we keep
the initial and final states fixed but allow arbitrary behavior in between, including changing the total proper
time seen by the matter particles, which in the FRW coordinates is t2 − t1. Therefore, in part (d), we did
not allow the most general legal variation. We should have fixed the initial and final a and allowed t1 and
t2 to float.

(e) Re-write Eq. (4) in terms of the function t(a). Allowing general variations with t1 and t2 free but
fixing a1 and a2, show that you can derive an equation involving t(a). Re-writing it in terms of a(t), show
that you arrive at the first-order equation:

(

ȧ

a

)2

=
8πρ0

3a3
+

K

a2
. (6)
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This is an example of a constraint equation – a constraint on initial conditions (i.e. on a field and its first
derivative) due to the existence of gauge degrees of freedom (in this case choosing the labeling of surfaces of
constant t). The fact that we have fixed the gauge by setting gtt = −1 does not remove the constraint!

(f) In any system of the form S =
∫

L(a, ȧ) dt, where L is a Lagrangian with no explicit time dependence,
it is possible to construct a conserved Hamiltonian H . In ordinary mechanics (including special relativity),
H is identified with the total energy. Construct H for the FRW universe and show that it is always equal
to zero.

2. Features in the cosmic microwave background. [16 points]
This problem concerns itself with the angular scale of features in the CMB due to sound waves in the early
universe. These waves are sourced by primordial density perturbations, and propagate in the plasma of
baryons and photons until the time of recombination (when the cosmic plasma cools, becomes neutral, and
hence transparent to radiation that no longer Thomson scatters).

(a) If the primordial plasma has ργ ≫ ρb, then the photon-baryon plasma has w = 1
3
. Show that the

sound speed in such a plasma is cs = 1/
√

3.
(b) Find the scale factor arec at recombination in terms of the temperature Trec of recombination (typically

∼ 3000 K) and the CMB temperature T0 today.
(c) Find the comoving distance rs that a sound wave travels between the Big Bang and recombination.

For this part, you may assume that during the epoch of interest ρ ≈ ρm (radiation is actually important in
this calculation at the level of a few tens of percents, but this assumption is good enough to illustrate the
physical principle involved), and leave your answer in terms of Trec, T0, Ωm, and H0.

(d) In the limit T0 ≪ Trec, find the comoving angular diameter distance to the epoch of recombination
in terms of Trec, T0, Ωm, and H0. Assume (incorrectly) that Λ = 0.

(e) Show that the angular size of the sound propagation distance, θs, is a function of Ωm and Trec/T0.
What is this function?

The answer to (e), combined with the observations of θs from the CMB around 2000, were a key line of
evidence (maybe the most important line of evidence) that led cosmologists to abandon the open Ωm ∼ 0.2,
Λ = 0 cosmological model.
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