
1 Galaxy surveys and large scale structure

The CMB provides a wealth of data at high redshift, but if we want to under-
stand the more recent evolution of the Universe we must observe nearby objects.
The easiest of these to observe are galaxies. Most of the cosmological informa-
tion from galaxies comes from their distribution, since this is easiest to predict
from first principles. We will first discuss some general properties of galaxies,
and then consider methods of extracting cosmological information:

• Angular correlations.

• Redshift surveys.

• ISW effect.

• Bispectrum/non-Gaussianity.

• Weak lensing.

We do not have a fundamental theory of galaxy formation, and will not
for some time to come. However the processes of gravitational collapse, gas
accretion, star formation, etc. are local and smoothed on some scale R the
number density of galaxies should depend only on the local density of the matter
(and possible stochastic processes). That is:

ng(x) = ng[δ(x)] + stochastic. (1)

The longest-range effect in galaxy formation (with the possible exception of
reionization) is gravitational collapse, which acts on a scale R ∼ k−1

? where
∆2

δ(k?) ∼ 1. (In order to enhance the density by of order unity on scale R,
the matter must move a distance ∼ R and the use of the linear density field is
inappropriate on smaller scales.) Smoothed on larger scales we will have |δ| � 1,
and can make a Taylor expansion:

ng(x) = n̄g[1 + bδ(x)] + stochastic, (2)

where b is a number called the bias. Both ng0 and b may depend on the type of
galaxy and the redshift. Some typical examples are:

• “Average” galaxies (luminosity ∼ Milky Way) at z = 0: ng ∼ 10−2h3

Mpc−3; b ∼ 1.

• Luminous red galaxies (LRGs – large ellipticals) at z ∼ 0.4: ng ∼ 4 ×
10−4h3 Mpc−3; b ∼ 2.

• Type 1 quasars (unobscured), z ∼ 1.5: ng ∼ 10−5h3 Mpc−3; b ∼ 2.5.
Number density declines at high redshift but bias increases: at z > 3 the
bias increases to b ∼ 10.
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At the present most galaxy clustering constraints come from these types of
objects. Typical galaxies are numerous but not very bright (∼ 1010L�) and
have only been mapped over large fractions of the sky out to z ∼ 0.2 by 2dF
and SDSS (optical) and 2MASS (infrared - photometric). LRGs are brighter
(∼ 1011L�) and have been mapped to z ∼ 0.4 by SDSS (and out to ∼ 0.6
without spectra). Quasars can exceed 1012L� and emit strongly in the UV so
that they are visible at z > 1; they also have strong emission lines which helps in
measuring the redshift. In the future, the more numerous star-forming galaxies
at 0.5 < z < 2 may overtake quasars as the best tool for large scale structure,
due to improvements in IR observations.

2 Angular correlations

The angular distribution of galaxies are the simplest type of galaxy cluster-
ing measurement to make. The method does not require a redshift for each
individual galaxy, rather it only requires the redshift distribution; this is an
advantage because obtaining a fair sample of redshifts is easier than measuring
106 redshifts.

Let us define the galaxy overdensity on the sky g as the number of galaxies
in a pixel divided by the mean number, minus 1:

g =
N

N̄
− 1. (3)

The number of galaxies N can be obtained by an integral over the line of sight,

N = Ω

∫

ngr
2 dr, (4)

where Ω is the solid angle of the pixel. Then:

g =

∫

ngr
2 dr

∫

n̄gr2 dr
− 1

=

∫

n̄g[1 + bδ]r2 dr
∫

n̄gr2 dr
− 1

=

∫

n̄gbδr
2 dr

∫

n̄gr2 dr
. (5)

The density field δ is actually changing with redshift according to the growth
function:

δ(x, z) =
D(z)

D(0)
δ0(x). (6)

It is common to define the window function:

f(r) =
D(z)

D(0)

b(r)n̄g(r)
∫

n̄g(r) r2 dr
. (7)

2



If the bias is constant then the selection function integrates to the bias:
∫

r2f(r) dr =
b. In terms of this, the galaxy overdensity is:

g(n̂) =

∫

r2f(r)δ0(rn̂) dr. (8)

Just like the case of the CMB, we cannot predict the specific distribution g
that we will see; rather we predict statistical properties. These are the angu-
lar power spectrum and the angular correlation function. The angular power
spectrum is obtained by taking the spherical harmonic transform of g:

g(n̂) =
∑

lm

glmYlm(n̂), (9)

with variance:
〈g∗lmgl′m′〉 = Cgg

l δll′δmm′ . (10)

The statistics of glm can be obtained as follows. First we consider the m = 0
case, and write it in terms of δ0:

gl0 =

∫

f(r)δ0(rn̂)Y ∗
l0(n) r2 dr d2n̂. (11)

Letting x = rn̂, and using the Fourier expansion of the density field:

δ0(x) =

∫

d3k

(2π)3
δ0(k) eik·x, (12)

and so:

gl0 =

∫

d3k

(2π)3
δ0(k)

∫

f(r)eik·xY ∗
l0(n) r2 dr d2n̂. (13)

The angular integration gives:

∫

eik·xY ∗
l0(n) d2n̂ = il

√

4π(2l+ 1) jl(kr)Pl(k̂3), (14)

so

gl0 = il
√

4π(2l + 1)

∫

d3k

(2π)3
δ0(k)

∫

f(r) r2jl(kr) dr. (15)

The squared absolute value gives:

Cgg
l = 〈|g2

l0|〉 = 4π(2l + 1)

∫

d3k

(2π)3
Pδ(k)

∣

∣

∣

∣

∫

f(r) r2jl(kr) dr

∣

∣

∣

∣

2

P 2
l (k̂3). (16)

The angular average of P 2
l (k̂3) is:

1

4π

∫

d2k̂P 2
l (k̂3) =

1

2

∫ 1

−1

dk̂3 P
2
l (k̂3) =

1

2l + 1
, (17)
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so

Cgg
l = 4π

∫

d ln k ∆2
δ(k)

∣

∣

∣

∣

∫

f(r) r2jl(kr) dr

∣

∣

∣

∣

2

. (18)

This equation ignores the stochastic part, which is usually modeled as Poisson
noise. This adds 1/n2D to the power spectrum, where n2D is the number of
galaxies per steradian.

In the limit of large l, if f(r) is slowly varying, one may simplify this equation
further. The function jl(x) is near zero for x < l, and oscillates for x > l. Neither
regime contributes to the integral. In between there is a bump in jl(x), which
may be modeled by replacing with a δ-function:

jl(x) →
√

π

2l
δ(x− l). (19)

This simplifies the integral to:

Cgg
l =

2π2

l

∫

d ln k ∆2
δ(k)[f(r)]2

r4

k2
, (20)

where r = l/k. We may then change the integration variable from k to r:

Cgg
l =

2π2

l

∫

d ln r ∆2
δ

(

l

r

)

[f(r)]2
r6

l2
, (21)

or after simplifying:

Cgg
l =

2π2

l3

∫

dr r5∆2
δ

(

l

r

)

[f(r)]2. (22)

This is usually written in terms of P (k):

Cgg
l =

∫

dr

r2
Pδ

(

l

r

)

[r2f(r)]2. (23)

A related statistic is the angular correlation function:

〈g(n̂1)g(n̂2)〉 = ξ(θ), (24)

where θ is the angle between n̂1 and n̂2. One can show (exercise!) that:

ξ(θ) =
∞
∑

l=0

2l+ 1

4π
Cgg

l Pl(cos θ). (25)

Angular clustering can be done with very large galaxy samples over large vol-
umes. Nevertheless it has disadvantages. One is that the third dimension is lost:
projection destroys many of the Fourier modes that could have been measured
in a redshift survey. As we will see these modes are not similar to the transverse
modes because the peculiar velocities of galaxies modify their observed redshifts
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in a way that can be used to extract information. Finally, the sample of galaxies
under consideration will be inhomogeneous: the nearby galaxies will be fainter
than average, and the more distant galaxies will be brighter because those are
the only ones we can see. These types of galaxies have different biases, which
have caused trouble for many cosmologists. One way to get around this is to
use color selection of galaxies to pick out a particular redshift range, as has been
done very successfully with LRGs.

3 Redshift surveys

The galaxy power spectrum can also be measured in 3-dimensional surveys if
the redshift of a galaxy is measured as well as its position. Redshifts are usually
obtained with multi-object spectrographs where fibers or slits are placed on
objects of interest, then run through a grism or diffraction grating to spread
the light into colors, which are imaged onto a CCD. In this way many galaxy
spectra are obtained at once. The choice of spectral features to determine the
redshift varies from object to object:

• For old galaxies (e.g. LRGs) the most readily identifiable features are
metal absorption lines, e.g. Ca II, Mg II, and Na I.

• For star-forming galaxies one can often find emission features: the forbid-
den lines (O II, O III) and Balmer lines (Hα, Hβ).

• Quasars have a host of emission lines; in order of wavelength: Lyα, Si
IV, C IV, C III, Mg II, Hγ, Hβ, O III, Hα. The O III lines and Balmer
lines are good choices because they trace the rest frame wavelength of the
quasar. Other lines such as Lyα, C IV, Mg II are complex and asymmetric
and may be significantly shifted by scattering of the blue side of the line
by outflows or IGM. They are less desirable but may be the best choice
at high redshift.

There are three major features that have historically been used in redshift
surveys to probe cosmology.

Broadband shape. On linear scales the galaxy power spectrum is propor-
tional to the matter power spectrum, ∆2

g(k) = b2∆2
m(k). We know that these

power spectra are ∝ k3+ns on large scales but roll over to k3+nsT (k)2 on small
scales, with the rollover point occuring at k = keq ∝ Ωmh

2. One of the major
goals of the last generation of redshift surveys (Sloan Digital Sky Survey/SDSS;
2 degree Field/2dF) was to precisely measure the rollover scale.

However one should remember that in a redshift survey one measures z, not
r. The distance is inferred from Hubble’s law: if z � 1 then r = z/H0. Since
we don’t know H0 a priori, r is measured in units of h−1 Mpc, not Mpc. Thus
when we take the 3D power spectrum, the wavenumber k and hence keq are
measured in units of hMpc−1. Therefore what the shape of the galaxy power
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spectrum can measure is:

keq

h
∝ Ωmh

2

h
= Ωmh. (26)

This product was often called the shape parameter Γ, although in recent years
this term has fallen out of favor. In combination with Ωmh

2 from the CMB, Γ
allows one to separately measure Ωm andH0. Alternatively with a measurement
of H0, Γ allows one to measure Ωm. This latter combination was one of the early
pieces of evidence that Ωm < 1.

The advantage of Γ is that it can be measured with a small sample of galaxies
(104). However one must worry about nonlinear evolution in the power spectrum
or interactions between galaxies that cause small amounts of k-dependent bias.
Simulations typically find k < 0.1hMpc−1 to be linear scales, but if one probes
to the percent level this may not be a safe assumption. Therefore in the future
cosmologists will turn to another way of using galaxy clustering.

Baryon oscillations. The wiggles in the power spectrum due to baryonic
effects in T (k) are much more robust than the broadband shape: to move them
requires a nonlocal interaction at the 150 Mpc scale. Therefore measuring these
features (whose physical size is known from CMB) is a promising way to con-
strain cosmology. In fact one can measure r from the transverse scale and H
from the radial scale, so the baryon oscillation is very rich in information.

Redshift-space distortions. So far we’ve assumed that the redshift z is
simply related to the distance r to a galaxy using the usual FRW equations,
but that’s not quite true. Galaxies have peculiar velocities and these are cor-
related with the distribution of matter. This is not a small effect, even though
the peculiar velocities are � c: they produce order-unity effects on the power
spectrum measured in a redshift survey. To see this, we note that the observed
redshift is related to the true redshift via:

1 + zobs =
λobs

λgal
=

λobs

λcom

λcom

λgal
= (1 + ztrue)(1 + v‖), (27)

where v‖ is the line-of-sight velocity. For small velocities, the distance at which
we place the galaxy in a 3D map is then:

robs = rtrue +
1 + z

H
v‖. (28)

To see the quantitative effect of the galaxy velocity, let’s go to linear pertur-
bation theory. The parallel component of the velocity is v‖ = µv, where µ is the

cosine of the angle between the line of sight n̂ and wavevector k̂: µ = n̂ · k̂. In
most cases, the galaxies will move at the same bulk velocity as the dark matter,
due to the equivalence principle. (The exception is satellite galaxies; see below.)
Then the velocity is given by the continuity equation:

v = i
δ̇

k
, (29)
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so
robs = rtrue + i

µ

aHk
δ̇. (30)

In linear perturbation theory, the 3D galaxy overdensity δg(k) in a given Fourier
mode can then be determined. It is the physical overdensity bδ corrected for
the Jacobian of the transformation from true coordinates (or “real space”) to
observed coordinates (or “redshift space”):

1 + δg(x) = [1 + bδ(x)]

(

drobs

drtrue

)−1

= 1 + bδ(x) − d

dr

( µ

aHk
δ̇
)

, (31)

where we have worked only to first order. Making the replacement d/dr →
ik‖ = ikµ, we get:

δg = bδ +
µ2

aH
δ̇. (32)

Now in linear perturbation theory, δ̇ = (Ḋ/D)δ, whereD is the growth function.
Thus:

δg = b

(

1 +
Ḋ

aHDb
µ2

)

δ. (33)

We define the redshift-space distortion parameter:

β =
Ḋ

aHDb
. (34)

Then the power spectrum of galaxies in redshift space is:

∆2
g(k) = b2

(

1 + βµ2
)

∆2
δ(k). (35)

The fact that the power spectrum depends on the direction of k (relative to
the line-of-sight) in addition to its magnitude opens up a new tool for cosmology.
In an Einstein-de Sitter universe, we would have D ∝ a and then Ḋ/aHD = 1.
In ΛCDM models this ratio is closer to Ḋ/aHD ≈ Ω0.6

m . But if Ωm is known,
e.g. from the shape parameter, and we measure β, this means we can obtain
the bias and convert the observed galaxy power spectrum into the true matter
power spectrum.

A complicating fact is that in redshift space there are nonlinear corrections
that are significant even at k < 0.1hMpc−1. Chief among these are the so-
called fingers of God: satellite galaxies in groups and clusters that have very
large orbital velocities, and hence in redshift space form an elongated feature
pointed at the observer. Observers interested in β usually compress these fingers
of God by identifying the central galaxy (at least statistically) and collapsing
the entire cluster to its velocity. An alternative is to remove the satellites from
the analysis entirely. All of these effects are helped by going to the largest
scales possible, and future large-volume redshift surveys are promising ways to
measure β.

Normalization. Historically the galaxy power spectrum was much easier to
measure than the bias, and hence one of the cosmological parameters over which
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there was considerable debate was the normalization of the matter power spec-
trum. The CMB observers would usually measure the normalization by quoting
∆ζ(k?) at some scale k?. Low-redshift observers prefer a different normalization
convention, preferring to quote σ8: the linear-theory standard deviation of δ8,
the matter overdensity in a sphere of radius R = 8h−1 Mpc. One can find the
variance of the filtered density field δ8 via:

σ2
8 = 〈δ28〉 =

∫

dk

k
∆2

δ8
(k) =

∫

dk

k
|W (k)|2∆2

δ(k), (36)

where W (k) is the Fourier transform of a top-hat function with radius R:

W (k) =

(

4

3
πR3

)−1 ∫

V

eik·x d3x. (37)

The conversion from ∆ζ(k?) to σ8 depends on the other cosmological parame-
ters; standard packages like CMBFAST and CAMB will do the conversion. The
WMAP estimate is σ8 = 0.80± 0.04, although most low-redshift measurements
prefer a slightly larger value.

4 ISW effect

Most of the CMB anisotropy is formed at very high redshift where there are no
galaxies. However the ISW effect, which involves changes in the gravitational
potential giving energy to (or taking energy from) the CMB photons, is active
at late times. The temperature perturbation due to ISW is:

Θ(n̂)|ISW = 2

∫

Φ̇(rn̂) dr. (38)

This is zero in the matter-dominated era because Φ =constant. However the
Poisson equation gives:

Φ = −4πGa2

k2
ρ̄mδ, (39)

and since ρ̄m ∝ a−3 and δ ∝ D(a), the potential varies with time in proportion
to D(a)/a. Thus in a ΛCDM universe, where D grows more slowly than a, the
potentials move toward zero. In overdense regions Φ̇ > 0, and in underdense
regions Φ̇ < 0. This leads to a small additional anisotropy in the CMB, but
more importantly it leads to a positive correlation of the CMB with the galaxy
distribution. The effect is unique to models with Λ or curvature and its detection
rules out Einstein-de Sitter.

This galaxy-CMB cross-correlation was first observed by combining the WMAP
CMB data with several galaxy surveys (2MASS, APM, SDSS, NVSS) and the X-
ray background (HEAO). Two combined analyses of the ISW effect with many
galaxy samples have been undertaken by Ho et al. (2008) and Giannantonio
et al. (2008) with a total detection significance of 4σ. In the matter+curvature
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case, in combination with CMB power spectrum, Ho et al. found Ωm = 0.26+0.12
−0.07

and ΩK = −0.01±0.02. These are not the tightest constraints but are a welcome
confirmation of the standard cosmology. Further improvement of these errors is
difficult because the chance superposition of the background CMB fluctuations
with the galaxy distribution introduces an unavoidable level of noise. Thus ISW
will never be the best way to constrain standard cosmological parameters, but it
may be a strong discriminator of non-standard explanations for the accelerating
universe.

5 Bispectrum/non-Gaussianity

Earlier we mentioned β as a way to measure the bias so that the galaxy power
spectrum can be converted to a matter power spectrum. Another way is to
directly use the nonlinear evolution. This method pushes into regimes where
galaxy formation physics may intervene, and hence is a very useful consistency
check on the standard galaxy biasing picture. That is to use the non-Gaussian
correlation between three Fourier modes, or “bispectrum” of the galaxies. We
will only sketch the method here, details can be found in the application to 2dF
by Verde et al. (2002) MNRAS 335, 432.

The density field today can be expanded in powers of the primordial density
field via perturbation theory:

δm = δ(1) + δ(2) + δ(3) + ..., (40)

where

δ(1)(k) =
2

5
D(a)T (k)

k2

ΩmH2
0

ζ(k) (41)

is the linear theory term that we have calculated. The second-order term is
generically written as

δ(2)(k) =

∫

d3k′

(2π)3
J(k′,k − k′)δ(1)(k′)δ(1)(k − k′), (42)

where the coupling coefficient J is (after a long calculation):

J(k1,k2) =
5

7
+

2

7
(k̂1 · k̂2)

2 +
1

2
(k̂1 · k̂2)

(

k1

k2
+
k2

k1

)

. (43)

Then to second order in perturbation theory the density field exhibits a bispec-

trum or 3-mode correlation function:

〈δm(k1)δm(k2)δm(k3)〉 = (2π)3B(k1,k2,k3)δ(k1 + k2 + k3), (44)

where
B(k1,k2,k3) = 2J(k1,k2)Pm(k1)Pm(k2) + permutations. (45)
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We can’t observe the matter bispectrum directly, but we can observe the galaxy
bispectrum. To second order, the galaxy overdensity must be expanded to
second order in the matter density:

δg(x) = 1 + b1δm(x) +
1

2
b2δm(x)2 + ... (46)

The bispectrum of the galaxies can then be computed to get:

Bg(k1,k2,k3) =
[

2b31J(k1,k2) + b21b2
]

Pm(k1)Pm(k2) + permutations. (47)

If we recall that the matter power spectrum is Pg(k)/b
2
1, then we can substitute

to get:

Bg(k1,k2,k3) =

[

2

b1
J(k1,k2) +

b2
b21

]

Pg(k1)Pg(k2) + permutations. (48)

The bispectrum is rich in information because we can measure it for any
triangle of k1,k2,k3. By using the configuration dependence of J , we can
separately measure 2/b1 and b2/b

2
1, so the large-scale bias of the galaxies can be

measured from the bispectrum, and we get b2 as a bonus. Verde et al. (2002)
did this with the 2dF galaxies and found b = 1.04 ± 0.11. By combining this
with the measurement of β from 2dF, they derived Ωm = 0.27 ± 0.06, entirely
internal to 2dF (no reliance on CMB!)

6 Weak lensing

A final way to probe the matter distribution is with weak gravitational lensing.
This is an extremely powerful method in principle, and quite hard in practice
due to systematic effects. Its power lies in the fact that lensing is sensitive
directly to the gravitational potential and hence the matter distribution. Its
difficulty lies in that it is a small effect.

Gravitational deflection of light. We first wish to consider what happens
to the images of distant galaxies if we look in the sky in direction n̂ through an
inhomogeneous universe.

Imagine a light ray traveling in direction p̂. The geodesic equation allows
one to solve for the deflection of p̂ in the presence of a gravitational potential;
one finds:

˙̂p = −2∇⊥Φ, (49)

where ∇⊥ is the gradient operator perpendicular to p̂. The light ray that we
see in direction n̂ has direction of propagation p̂ = −n̂ today. If we integrate
its trajectory backward, we find:

p̂(η0 − r) = −n̂ + 2

∫

∇⊥Φ(x) dr, (50)

where x is the position of the photon at some earlier time. We will work in
linear theory (Born approximation) so that we may approximate x = rn̂. Also
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the perpendicular gradient is D/r, where D is the angular covariant derivative
on the unit sphere. Thus:

p̂(η0 − r) = −n̂ + 2D

∫

Φ(rn̂)
dr

r
. (51)

The comoving position x of the photon at some earlier time is obtained by
integrating p̂:

x(η0 − r) = −
∫

p̂(η0 − r′) dr′

= rn̂ − 2D

∫ r

0

dr′
∫ r′

0

Φ(r′′n̂)
dr′′

r′′

= rn̂ − 2D

∫ r

0

dr′′
r − r′′

r′′
Φ(r′′n̂) dr′′. (52)

We define the lensing strength to be:

g(r′′|r) = 2
r′′(r − r′′)

r
, (53)

so that:

x(η0 − r) = r

[

n̂− D

∫ r

0

g(r′′|r)Φ(r′′n̂)
dr′′

r′′2

]

. (54)

The second term is called the deflection angle d:

d = −D

∫ r

0

g(r′′|r)Φ(r′′n̂)
dr′′

r′′2
, (55)

and it is the angular gradient of the lensing potential ψ:

ψ = −
∫ r

0

g(r′′|r)Φ(r′′n̂)
dr′′

r′′2
. (56)

The observed position of a galaxy n̂ and distance r is related to its true
position n̂S via:

n̂S = n̂ + d. (57)

Usually n̂S and n̂ are called the source-plane and image-plane positions, respec-
tively.

The lensing potential is positive in overdense regions (negative Φ) and neg-
ative in underdense regions. This makes sense: the deflection angle is toward
overdensities.

Image distortions. Neither the lensing potential or the deflection angle is
observable because we don’t know the true positions of the galaxies we observe.
We can start to examine observable quantities by taking derivatives of ψ. The
key idea is that galaxies, on average, are round in the source plane: some are
elongated in one direction, others in another, but on average they are round. To
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make this explicit, let’s write the Jacobian for the transformation from source
to image plane:

Jacij =
∂ni

∂nS
j

= δij − di,j = δij − ψ,ij . (58)

Often the distortion matrix di,j is decomposed into a diagonal part and a 2× 2
traceless-symmetric tensor:

Aij ≡ −ψ,ij = −κδij −
(

γQ γU

γU −γQ

)

. (59)

In this matrix, κ corresponds to an overall magnification of the image; γQ is a
shear, i.e. stretch along the N-S axis and a compression along the E-W axis; and
γU is a shear that stretches along the NE-SW axis and compresses along NW-SE.
All three of these are measurable if one averages sizes or shapes over an ensemble
of galaxies. The usual preference is for shapes because the size distribution of
galaxies is wider than the shape distribution, so the γ measurement is much less
noisy.

There is a large literature on ways to estimate γ from galaxy shapes; we
won’t get into them here but this is a topic of current research.

Shear power spectrum. Here κ forms a scalar field on the sphere, and
γQ,U form a tensor (just like polarization components). Hence κ has a power
spectrum, and γ has E- and B-type power spectra. Because it is derived by
differentiating a scalar, γ has no B-type components. In fact, one can show that
in the multipole decomposition:

κlm = l(l + 1)ψlm; γE
lm =

√

(l − 1)l(l + 1)(l + 2) ψlm; γB
lm = 0. (60)

The E-type power spectrum of γ can be computed from first principles given a
set of cosmological parameters; it is an integral over the matter power spectrum
and hence is proportional to σ2

8 in linear perturbation theory. It thus provides
yet another way to measure σ8 which cannot be obtained directly from the
galaxy power spectrum, independent of the bispectrum or the redshift-space
distortions. But the most tempting way to use the E-type power spectrum is
to directly use the E-type power spectrum to fit cosmological parameters. This
way one is not sensitive to details of the galaxy formation process. Another
advantage is that one can use simulations to follow the distribution of matter
into the nonlinear regime where one does not know how galaxies will behave.
This has been done, e.g. the CFHT Legacy Survey finds σ8(Ωm/0.25)0.64 =
0.785± 0.043 (Fu et al 2007).

The shear power spectrum is extremely useful, however it is subject to a
number of systematic errors:

• Point-spread function: Galaxies at cosmological distances z ≥ 0.5 are
typically of order an arcsecond in size. This is the same order of magnitude
as the smearing of light by the atmosphere. Most telescopes have optical
distortions or tracking errors that are not much smaller than this. These
effects can coherently distort the shapes of galaxies, and lead to a false
shear signal.
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• Redshift distributions: The shear power spectrum is a strong function
of the redshifts of the galaxies. In order to measure shear one needs
many more galaxies than one can obtain spectroscopic redshifts. There-
fore one must obtain the redshift distribution, or better use photometric
redshifts where one constructs a model spectrum based on stellar age,
dust extinction, redshift, etc. and fits it to observed fluxes in several
wavebands. Model deviations are sources of systematic error and must be
tested against spectroscopic redshifts.

• Intrinsic alignments: The simple picture of shear outlined above assumes
that galaxy shapes are random and average down as 1/

√
N . Unfortunately

some galaxies exhibit correlations of their intrinsic shapes that contami-
nate the lensing effect. The intrinsic shapes can also be correlated with the
density field, which causes an additional type of systematic error. Current
shear power spectrum measurements use small samples of spectroscopic-z
galaxies to estimate and remove the effect. In the future it may be possible
to eliminate it by using its different redshift dependence.

Galaxy-shear correlation. Another way to use weak lensing that is much
less sensitive to these problems is to cross-correlate galaxies and shear. The
correlation is proportional to bσ2

8 , whereas the galaxy power spectrum is pro-
portional to b2σ2

8 . The combination allows determination of σ8.
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