
So far we’ve treated the CMB as unpolarized. This is not quite correct,
and it matters for two reasons. One is that polarization affects the Thomson
scattering cross section so polarization anisotropies feed back into the temper-
ature anisotropies. This is a percent-level effect but important for precision
cosmology. Much more important is that the polarization adds a new window
on the processes of recombination and reionization, the nature of the primordial
perturbations, and searches for tensor perturbations.

1 Basic theory

Description. Up until now we’ve assumed that the photons have a scalar
phase space density f(xi, p, p̂i, η). In reality there are two photon polarizations,

vertical (θ̂) and horizontal (φ̂), and the phase space density may be different
in each one. Moreover the two polarizations may be correlated if the photons
are polarized in a diagonal direction or have circular polarization. Generally we
write the phase space density as a 2 × 2 Hermitian density matrix:

f =

(

fθ̂θ̂ fθ̂φ̂
fφ̂θ̂ fφ̂φ̂

)

=

(

fI + fQ fU + ifV
fU − ifV fI − fQ

)

. (1)

The phase space density viewed through a linear polarizing filter at position
angle ψ is

f(xi, p, p̂i, η;ψ) = fI + fQ cos 2ψ + fU sin 2ψ. (2)

The temperature perturbation that we have been studying has an analogue
for polarization. We define the temperature polarization Θ as:

fI =

[

exp
p

Tγ0(1 + Θ)
− 1

]−1

, (3)

or

Θ(xi, p, p̂i, η) =
fI − f (0)

−p ∂f (0)/∂p
. (4)

In the unperturbed Universe there is no polarization. Therefore we may define

Q(xi, p, p̂i, η) =
fQ

−p ∂f (0)/∂p
, (5)

and similarly for U and V . Our job is thus to follow Q, U , and V in addition
to Θ. As usual we will work in terms of the Fourier modes, i.e. use ki instead
of xi, and arrange to put the 3rd coordinate axis in the direction of k.

The polarization will be created by Thomson scattering. Since Thomson
scattering does not create circular polarization, we will not consider V . It is
then convenient to write the polarization as a traceless-symmetric tensor field,

Pab =

(

Q U
U −Q

)

. (6)
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Polarized Boltzmann equation. The Boltzmann equation for the polar-
ized phase space densities is just like that for the intensity: one writes:

Df

dη
= C[f ], (7)

where C[f ] is the collision term, and the derivative D/dη transports the 2 × 2
matrix f according to:

Dfab
dη

=
∂

∂η
fab+ẋ

i ∂

∂xi
fab+dotp

∂

∂p
fab+ ˙̂pi

∂

∂p̂i
fab+h

µ
a

(u · ∇)hcµ
u0

hνb
(u · ∇)hdν

u0
fab.

(8)

where a, b ∈ {θ̂, φ̂} are indices of the 2-dimensional plane perpendicular to di-
rection of photon propagation, i.e. on the unit sphere. In the last term hµa is the
4-vector corresponding to the unit vector in direction a on the unit 2-sphere.
This term accounts for the fact that the basis {θ̂, φ̂} is not parallel-transported
along the photon’s trajectory, so the polarization can appear to rotate due to
the choice of coordinate system. At first order in perturbation theory this effect
must vanish since the polarization is first-order and any coordinate rotation is
also first-order. A similar argument kills the ˙̂pi term. Also ẋi multiplies a first-
order term (a spatial gradient) so it can be replaced with its zeroeth-order value
p̂i. If one is looking at the polarized components, fab is first-order so one may
replace ṗ with −aHp. Thus the photon Boltzmann equation reduces to:

ḟQ + p̂i
∂

∂xi
fQ − aHp

∂

∂p
fQ = C[fQ], (9)

and similar for fU . Writing this in terms of the dimensionless Q and U , we get:

−p∂f
(0)

∂p
Q̇−Q

∂

∂η

(

p
∂f (0)

∂p

)

− p
∂f (0)

∂p
p̂i

∂

∂xi
Q+ aHp

∂

∂p

(

p
∂f (0)

∂p
Q

)

= C[fQ],

(10)
Since f (0) depends only on the combination ap, the ∂/∂η term cancels against
the part of the fourth term where the derivative acts on p∂f (0)/∂p. Then, after
dividing through by −p∂f (0)/∂p, we get:

Q̇+ p̂i
∂

∂xi
Q+ aHpp

∂f (0)

∂p

∂

∂p
Q =

C[fQ]

−p∂f (0)/∂p
. (11)

This is a remarkably simple equation: note that there is no gravity in it. Po-
larization is created only by the collision operator, which includes Thomson
scattering. Like the case for Θ, it will turn out that Q and U are frequency-
independent. We will write the right-hand side as C[Q] so:

Q̇+ ik · p̂Q = C[Q]. (12)

Spherical harmonic decomposition. The decomposition of Q and U
in spherical harmonics is not as straightforward as Θ because Θ was a scalar
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whereas Q and U form a tensor. In order for the spherical harmonic modes of Q
and U to satisfy the same rotational properties as the Θlm, we need to construct
tensors covariantly derived from the Ylm. The simplest way to do this is to take
derivatives of the Ylm’s:

Y Elm ab(θ, φ) = − 2
√

(l − 1)l(l + 1)(l + 2)

(

DaDb −
1

2
gabD

2

)

Ylm, (13)

and

Y Blm ab(θ, φ) = − 1
√

(l − 1)l(l+ 1)(l + 2)
(εbcDaDc + εacDbDc)Ylm, (14)

whereDa is the covariant derivative on the unit sphere and εab is the Levi-Cevita
tensor. These functions form a complete basis for the traceless-symmetric tensor
fields on the unit sphere. (One can prove this by applying the second-derivative
operators to any polarization field Pab to get a scalar, and then expanding the
scalar in spherical harmonics.) It is also possible to show that they differ only
by a 45◦ rotation of the polarization direction. The normalization coefficients
have been chosen so that:

∫

Y E∗

lm abY
E ab
lm d2p̂i = 2, (15)

and similarly for B. The 2 is useful because |fab|2 actually double-counts the
square of each Stokes parameter, i.e. it is 2(f2

I + f2
Q + f2

U + f2
V ).

Note that there is no l = 0 or l = 1 tensor field, which is a consequence of the
e±2iψ dependence of the polarized intensity. One can see this as well by noting
that the traceless-symmetric derivative operators applied to Y0m and Y1m give
zero.

In addition to rotational properties, which are equivalent to those of Ylm,
the tensor spherical harmonics have parity properties:

Ylm(p̂) = (−1)lYlm(−p̂); Y Elm(p̂) = (−1)lY Elm(−p̂); Y Blm(p̂) = −(−1)lY Blm(−p̂).
(16)

The B-type spherical harmonic has an extra minus sign because its definition
included the Levi-Cevita tensor.

It is common to express the polarized phase space density in E and B spher-
ical harmonics:
(

Q(p̂) U(p̂)
U(p̂) −Q(p̂)

)

=
∑

lm

(−i)l
√

4π(2l + 1)[ElmY
E
lm ab(p̂) +BlmY

B
lm ab(p̂)],

(17)
in analogy to the temperature anisotropies. This equation is the analogue of the
spherical harmonic decomposition for polarization. The Elm and Blm transform
under rotations in the same way as Θlm.
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Free-streaming term. The polarized Boltzmann equations, Eq. (12), can
be transformed to spherical harmonic space by integrating against Y E∗

lm ab:

Ėlm +
1

2
k
∑

l′m′

il+1−l′
√

2l′ + 1

2l+ 1

∫

[

El′m′Y E ab
l′m′ +Bl′m′Y B ab

l′m′

]

Y E∗

lm ab cos θ d2p̂i

=
il

2
√

4π(2l+ 1)

∫

P abY E∗

lm ab d
2p̂i, (18)

and similarly for Blm. The integral on the left-hand side is a free-streaming
term: it is the analogue of the integral

∫

Y ∗

lmYl′m′ cos θ d2p̂i that we did for the
free-streaming of the temperature. Azimuthal symmetry requires m′ = m and
angular momentum addition requires l′ = l − 1, l, l+ 1. Also cos θ has negative
parity (it flips sign if one reverses the direction of p̂) so in the Ėlm equation
the El′m′ term enters for l′ = l ± 1 and the Bl′m′ term enters for l′ = l. The
evaluation of the nonzero integrals is tricky; we get:

1

2

∫

Y E ab
l′m′ Y E∗

lm ab cos θ d2p̂i = δmm′δl′,l−1

√

(l −m)(l +m)(l − 2)(l + 2)

l2(2l− 1)(2l + 1)

+δmm′δl′,l+1

√

(l + 1 −m)(l + 1 +m)(l − 1)(l + 3)

(l + 1)2(2l + 1)(2l+ 3)
,(19)

and
1

2

∫

Y B ab
l′m′ Y E∗

lm ab cos θ d2p̂i = δmm′δll′
2m

l(l+ 1)
. (20)

We then conclude that:

Ėlm =

√

(l − 2)(1 + 2)(l −m)(l +m)

l(2l+ 1)
kEl−1,m −

√

(l − 1)(l+ 3)(l + 1 −m)(l + 1 +m)

(l + 1)(2l+ 1)
kEl+1,m

− 2im

l(l+ 1)
kBlm + C[Elm]. (21)

A similar equation holds for B:

Ḃlm =

√

(l − 2)(1 + 2)(l −m)(l +m)

l(2l+ 1)
kBl−1,m −

√

(l − 1)(l + 3)(l + 1 −m)(l + 1 +m)

(l + 1)(2l+ 1)
kBl+1,m

+
2im

l(l+ 1)
kElm + C[Blm]. (22)

Collision operator. The collision term for polarization can depend only
on the local phase space density of the photons, and only on the photon density
at that particular frequency. Symmetry (rotation, parity) considerations also
dictate that the collision term C[Elm] can depend only on quantities with the
same angular momentum and parity, i.e. Θlm and Elm, whereas C[Blm] can
depend only on Blm. Also the coefficients can depend only on l and not m:

C[Elm] = τ̇Elm − τ̇(αlΘlm + βlElm); C[Blm] = τ̇Blm − τ̇ γlBlm. (23)
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Our job is to derive the coefficients αl, βl, and γl. Note that we have taken the
term associated with removal of photons out front and the αl, βl, and γl then
describe radiation that has been re-emitted after scattering.

The simplest way to do this is to consider the m = 0 case. Because of
the φ-independence of Yl0, the E-type spherical harmonics YE

lm have only Q
polarization and the B-types have only U . Thus we may derive α and β by
taking an m = 0 mode and keeping only the Q polarization. There is then a
separate vertical (north-south) temperature perturbation ΘV and a horizontal
(east-west) perturbation ΘH , given by

ΘV = Θ +Q, ΘH = Θ −Q. (24)

One can estimate the post-scattering intensity and polarization by looking at
the polarization-resolved differential scattering cross section from initial direc-
tion/polarization p̂′, ζ′ to p̂, ζ. The part of the collision term due to re-scattered
radiation is:

C[ΘV (p̂)]rescat = |τ̇ |
∫
[

dPV→V

dΩ
ΘV (p̂′) +

dPH→V

dΩ
ΘH(p̂′)

]

d2p̂′. (25)

The polarization-resolved differential probability is

dPζ′→ζ

dΩ
(p̂′ → p̂) =

3

8π
(ζ · ζ′)2. (26)

Now for directions θ′, φ′ and θ, φ, one may take the horizontal and vertical
polarization vectors:

ζV = (cos θ cosφ, cos θ sinφ,− sin θ); ζH = (− sinφ, cosφ, 0), (27)

and then the differential probabilities are:

dPH→H

dΩ
(p̂′ → p̂) =

3

8π
cos2 ∆φ,

dPH→V

dΩ
(p̂′ → p̂) =

3

8π
cos2 θ sin2 ∆φ,

dPV→H

dΩ
(p̂′ → p̂) =

3

8π
cos2 θ′ sin2 ∆φ,

dPV→V

dΩ
(p̂′ → p̂) =

3

8π
(cos θ cos θ′ cos∆φ+ sin θ sin θ′)2. (28)

where ∆φ = φ−φ′. Since we’re looking at m = 0 modes, one may average over
∆φ, and then get:

C[ΘV (p̂)]rescat =
3

4
|τ̇ |
∫
[

(
1

2
cos2 θ cos2 θ′ + sin2 θ sin2 θ′)ΘV (p′) +

1

2
cos2 θΘH(p′)

]

sin θ′ dθ′;

C[ΘH(p̂)]rescat =
3

4
|τ̇ |
∫
[

1

2
cos2 θ′ΘV (p′) +

1

2
ΘH(p′)

]

sin θ′ dθ′. (29)
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Using Q = (ΘV − ΘH)/2, one may convert this into a scattering term for Q:

C[Q(p̂)]rescat =
3

8
|τ̇ |
∫
[

sin2 θ(sin2 θ′ − 1

2
cos2 θ′)ΘV (p′) − 1

2
sin2 θΘH(p′)

]

sin θ′ dθ′

=
3

8
sin2 θ|τ̇ |

∫

[(
1

2
− 3

2
cos2 θ′)Θ(p′) +

3

2
sin2 θ′Q(p′)] sin θ′ dθ′.

(30)

This equation can be simplified if we recall the values of the spherical har-
monics,

Y20 =

√

5

16π
(3 cos2 θ − 1), Y E

20 θ̂θ̂
=

√

15

32π
sin2 θ. (31)

It is clear from inspection of C[Q]rescat that only these two spherical harmonics
are involved. In particular, if we convert to lm space, C[Elm] vanishes unless
l = 2. For this special case, we get (by converting to spherical harmonics and
using orthonormality):

C[E20]rescat =

(

−
√

6

10
Θ20 +

3

5
E20

)

|τ̇ |. (32)

That is, α2 = −
√

6/10 and β2 = 3/5. By spherical symmetry this equation
must apply to the other values of m.

A similar calculation can be done for B and shows the re-scattering term to
be zero, γl = 0.

Thus the overall system of equations for polarization is:

Ėlm =

√

(l − 2)(1 + 2)(l −m)(l +m)

l(2l+ 1)
kEl−1,m −

√

(l − 1)(l+ 3)(l + 1 −m)(l + 1 +m)

(l + 1)(2l+ 1)
kEl+1,m

− 2im

l(l+ 1)
kBlm − |τ̇ |

(

Elm +

√
6Θ2m − 6E2m

10
δl2

)

. (33)

and

Ḃlm =

√

(l − 2)(1 + 2)(l −m)(l +m)

l(2l+ 1)
kBl−1,m −

√

(l − 1)(l + 3)(l + 1 −m)(l + 1 +m)

(l + 1)(2l+ 1)
kBl+1,m

+
2im

l(l+ 1)
kElm − |τ̇ |Blm. (34)

Power spectra. In the case of the CMB temperature, we defined a power
spectrum based on the local decomposition of the temperature anisotropy into
spherical harmonics:

Θ(p̂) =
∑

lm

almYlm(p̂), 〈a∗lmal′m′〉 = Clδll′δmm′ . (35)
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For polarization one can define a similar decomposition:

(

Q(p̂) U(p̂)
U(p̂) −Q(p̂)

)

=
∑

lm

[

aElmY
E
lm âb̂

(p̂) + aBlmY
B
lm âb̂

(p̂)
]

. (36)

There are separate E-type and B-type power spectra,

〈aE∗

lma
E
l′m′〉 = CEEl δll′δmm′ , 〈aB∗

lma
B
l′m′〉 = CBBl δll′δmm′ . (37)

Because E has the same parity as temperature, it is also possible to have a
temperature-polarization spectrum:

〈a∗lmaEl′m′〉 = CΘE
l δll′δmm′ . (38)

The power spectra for the scalars can be determined using the same method
as for the temperature, i.e. integrating over wavenumbers and angles to get:

CEEl = 4π

∫

∆2
ζ(k)

∣

∣

∣

∣

El
ζ

(k)

∣

∣

∣

∣

2

d ln k

CΘE
l = 4π

∫

∆2
ζ(k)<

[

Θ∗
l

ζ
(k)

El
ζ

(k)

]

d ln k. (39)

The real part and complex conjugate are technically unnecessary for the scalars
since Θl/ζ and El/ζ are real.

2 Phenomenology

A few results follow easily from the above equations:

• Thomson scattering of the local quadrupole Θ2m of the temperature field
is the only source for polarization.

• Generation of polarization can only happen in regions where the optical
depth is high enough to have Thomson scattering but not so high as to
wash out the quadrupole. The two such possibilities are the recombination
surface and reionization.

• Thomson scattering can only generate l = 2 E-type polarization; the free-
streaming terms are needed to generate everything else.

• The mixing of E into B-type polarization occurs via a single term in the
Ḃlm equation that has a factor of m. Therefore for scalar perturbations
(m = 0) there is no way to generate B-type polarization. On the other
hand tensors can generate it.

Recombination epoch. Polarization can be generated at recombination
because of the finite thickness of the last scattering surface. The finite optical
depth |τ̇ | <∞ allows a Θ2 to be generated, and then converted into polarization.
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We can get an approximate sense for the magnitude of the polarization by using
the tight-coupling limit:

Θ̇2 =
2

5
kΘ1 +

9

10
τ̇Θ2, (40)

and supposing that the two terms on the right side approximately balance,
which should be true if τ̇ is large. Then:

Θ2 ≈ 4k

9|τ̇ |Θ1. (41)

The polarization generated by the source term is:

Ė2 ≈ −
√

6

10
|τ̇ |Θ2 ≈ −2

√
6

45
kΘ1. (42)

Thus right after recombination we should have a polarization field of

E2(ηrec) ≈ −2
√

6

45
k∆ηlssΘ1, (43)

where ∆ηlss is the width of the last scattering surface, i.e. the time during
which the above equations are valid. But Θ1 is an oscillating function; in the
small-scale limit we have

Θ1 ≈ − ζ√
3

sin
kηrec√

3
e−k

2/k2

D , (44)

so

E2(ηrec) ≈
2
√

2

45
k∆ηlss sin

kηrec√
3

e−k
2/k2

Dζ. (45)

This is an oscillating function, which rapidly goes to zero at large k, and also
has an exponential cutoff. It is proportional to the width of the surface of last
scattering. It is smaller than Θ1 by a factor of k∆ηlss.

In order to determine what the polarization looks like today we need to do a
radiative transfer calculation. This is analogous to the spherical Bessel function
calculation for temperature, except that the polarization equations are more
complicated and the solution is a tensor spherical Bessel function. Qualitatively,
however, the results are similar to those for temperature: the power spectrum
CEEl today is an integral over ∆2

ζ(k) weighted heavily at k ∼ lrCMB. Because
E2 has a sine instead of a cosine dependence, the results are:

• The E-type polarization power spectrum CEEl shows acoustic oscillations,
but 180◦ out of phase with CΘΘ

l (sin2 vs. cos2).

• The cross-correlation CΘE
l is 90◦ out of phase with both (sin cos).

Reionization epoch. Theory predicts that the universe should have be-
come neutral at z ∼ 1200 and the existence of acoustic oscillations confirms that
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this picture is basically correct. However we know that the universe must have
become reionized again from studies of hydrogen (Lyman-α) absorption lines
in quasars. A neutral intergalactic medium would present an optical depth of
∼ 104 and all flux blueward of Lyman-α in the quasar rest frame would be wiped
out. Instead what is observed is a complex series of absorption features whose
fractional transmission increases with redshift, being about 50% at z ∼ 3 and
becoming complete above z = 6. This implies that some mechanism reionized
almost all of the gas in the universe some time before z = 6. The most likely
candidate is UV radiation from an early generation of stars.

Reionization causes an additional source of optical depth between us and
the recombination surface. If reionization were a step function at z = zri, with
post-reionization electron abundance xe, then this optical depth is

τri =

∫

neσTdt =
σTnH0xe

H0

∫ zri

0

(1 + z)3
dz

(1 + z)
√

ΩΛ + Ωm(1 + z)3
. (46)

If zri is large then the cosmological constant has only a minor influence; remov-
ing it reduces the integral to:

τri ≈
2σTnH0xe

3Ω
1/2
m H0

(1 + zri)
3/2. (47)

The usual assumption is that at reionization, H became ionized to H+ and He
to He+, which gives xe = 1.08 (1 electron from H and 0.08 from He). (He→He+

is predicted by simulations to occur at the same time as H→H+ because of the
spectrum of the stars.) Under these conditions, we get:

τri ≈ 0.0023(1 + zri)
3/2. (48)

The requirement of zri > 6 from the quasar absorption features implies τri >
0.043.

In order to measure τri we must understand its impact on the CMB. If one
studies the Boltzmann equation, one can see that all of the high multipoles in the
CMB have terms in the Θ̇l equation that contain −|τ̇ |Θl for l ≥ 1. These terms
become inactive after recombination, but turn on again due to reionization.
This implies that all of the modes that were inside the horizon at reionization
(hence have temperature anisotropies dominated by large l) are suppressed by
a factor of exp(−τri). The condition for this to occur is roughly kηri � 1, or

l = k(η0 − ηri) �
η0 − ηri
ηri

. (49)

Within this range the power spectrum, which depends on Θ2
l , is suppressed by

a factor:
Cl → Cl exp(−2τri). (50)

Therefore reionization causes a suppression of all the high multipoles. This
makes sense: the additional scattering wipes out small-scale structure.
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A second effect of reionization is on the CMB polarization. For modes
that were outside the horizon at recombination, we found in the temperature
anisotropy section that

Θl(η) = −1

5
ζjl(kη), (51)

and in particular

Θ2(ηri) = −1

5
ζj2(kηri). (52)

If the scattering from reionization were instantaneous (it’s not) then this imme-
diately generates E-type polarization:

E2(ηri) =

√
6

50
τriζj2(kηri). (53)

The free-streaming converts this into a polarization today at l ∼ k(η0 − ηri).
Since the spherical Bessel function is dominated by arguments near ∼ 3, we
thus expect E-mode polarization to peak at

l ∼ 3
η0 − ηri
ηri

(54)

and have an amplitude proportional to τri. In the power spectrum one expects:

CEEl ∝ τ2
ri; CΘE

l ∝ τri. (55)

The expected polarization per ln l,
√

l(l + 1)CEEl /2π is of order τri∆ζ ∼ 10−6,

i.e. at the microKelvin level; the factor of
√

6/50 makes this even lower. Never-
theless this polarization feature at low l it was detected by WMAP, which finds
τri = 0.087 ± 0.017 and zri = 11.0 ± 1.4.

Gravitational waves. Primordial gravitational waves are expected to be
very weak, and their imprint on the CMB temperature fluctuations would be
very hard to disentangle from that of the density fluctuations. In polarization
however they have a unique signature: the B-type polarization, which is not
generated by density perturbations.

The formal way to compute the B-type polarization signature is to superpose
many waves:

CBBl = 8π

∫

∆2
h(k)

∣

∣

∣

∣

Bl
h

(k)

∣

∣

∣

∣

2

d ln k. (56)

We may however make an educated estimate as follows. The rate of generation
of photon quadrupole at the recombination surface is:

Θ̇2 ∼ − Ė
5

≡ 2

5
√

3
ḣ, (57)

where we have written the gravitational wave amplitude in terms of h = (h+ ∓
ih×)/

√
2 instead of E to avoid confusion with the polarization. This occurs

throughout the time of last scattering, so during this surface Θ2 is of order

Θ2 ∼ 2

5
√

3
ḣ∆ηlss. (58)
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Thomson scattering then generates E-type polarization:

Ė2 ∼ −
√

6

10
|τ̇ |Θ2 ∼ −

√
2

25
ḣ∆ηlss|τ̇ |. (59)

Using |τ̇ | ∼ 1/∆ηlss and integrating over the surface of last scatter, we get:

E2 ∼ −
√

2

25
ḣ∆ηlss. (60)

The dominant gravitational wave modes will be those that enter the horizon at
recombination k ∼ 1/ηrec: modes that enter earlier have adiabatically decayed
away, and those that enter later have h 6= 0 but ḣ ≈ 0. For these waves,
ḣ ∼ h/ηrec, and the typical polarization is:

√
2

25

∆ηlss
ηrec

hrms ∼ 10−7r1/2. (61)

This is at a scale of l ∼ kη0 ∼ η0/ηrec ∼ 50, i.e. a few degrees. However for typ-
ical models with r ∼ 0.1 the amplitude is down in the range of 100 nanoKelvins,
and a more careful calculation gives a somewhat lower number. This makes
gravitational waves one of the most difficult problems in observational cosmol-
ogy. Nevertheless there is an enormous prize: measuring r and hence setting
the energy scale of the inflationary epoch.

Gravitational waves also generate polarization at reionization, however this
is on the largest scales (l of a few) where foregrounds (see below) are most
severe.

3 Systematics

No discussion of the CMB would be complete without a brief mention of the
problems facing observers who measure such tiny signals. Here we give an
incomplete list:

• The ground: The CMB polarization fluctuations are a few µK, but the
ground is at ∼ 300 K. Therefore if even a small amount of ground radi-
ation diffracts into the telescope it is a serious problem. Ground-based
experiments must take care to minimize diffraction, and also take advan-
tage of the fact that the sky rotates relative to the ground so that the two
effects can be separated. Going to space also helps but is expensive.

• Atmosphere: The Earth’s atmosphere contains H2O and O2 molecules that
radiate in the microwave bands. Humidity variations can masquerade as
CMB anisotropies. These move relative to the sky and do not repeat from
day to day, so once again there are ways to separate them, nevertheless
they are so large that they must be very carefully removed. Balloon or
space experiments have an advantage as they rise above most of the water.
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• Beams: Precise measurement of the CMB fluctuations requires that one
understand the beam (i.e. how the response to a source varies depending
on how far it is off the boresight) very well. These are usually determined
by diffraction: the resolution of an experiment is no better than θ = λ/D.
But to measure CMB power spectrum to 1%, we need to know the Fourier
transform of the beam to 0.5%. Often one uses a bright microwave source
such as a planet for this purpose.

• Intensity-to-polarization leakage: Since the CMB temperature fluctuations
are much brighter than polarization one must make sure that the two po-
larizations measured by the instrument have the same relative calibration
and that features such as polarized diffraction spikes are well understood.
The CMB temperature fluctuations are much fainter than the ground, so
one might think they are less of a problem; but they are fixed to the sky
which may make them more pernicious than ground pick-up.

• Response to magnetic fields: The Earth’s magnetic field can affect some
types of microwave detectors, especially those using SQUIDs to measure
current. These must be carefully shielded using superconducting cages.

There are also foregrounds: objects that emit microwaves that are not the
CMB.

• Active galactic nuclei: These emit synchrotron radiation that is often time-
dependent. They have a different spectrum than the CMB, tilted to lower
frequencies than a blackbody. The brighter ones can be recognized easily
in CMB maps and are usually (though not always) pointlike but the fainter
ones may not. Some experiments, including WMAP, must do a statistical
subtraction of AGN.

• Star-forming galaxies: These emit synchrotron, free-free radiation, and
also thermal radiation from dust grains that have been heated by ab-
sorption of starlight. They are much fainter than AGN but with several
emission mechanisms may have complex spectra. To date they have not
been a problem but the next generation of higher-frequency CMB exper-
iments (≥ 150 GHz) could face significant difficulties, especially at small
angular scales.

• Galactic synchrotron: Our own Milky Way emits synchrotron radiation,
which fills the entire sky and at low frequencies (22 GHz) contributes tens
of µK even at high Galactic latitude. Synchrotron is highly polarized
which makes it a special problem for CMB experiments. It is steeply
frequency-dependent, being much brighter at low frequency, so maps at
e.g. 400 MHz are often used to assess contamination.

• Galactic free-free radiation: This is present but not the dominant fore-
ground at any frequency. It has a well-understood spectral dependence,
Iν ∝ ν−0.15, so it is most important at low frequency. It is intrinsically
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unpolarized in the optically thin regime, and its source, warm ionized gas,
is also traced at optical wavelengths by diffuse Hα emission.

• Galactic dust: Interstellar dust absorbs starlight and can re-radiate it
at infrared wavelengths; a small fraction of the energy emerges in the
microwave via the Rayleigh-Jeans tail. The emission is weakly (∼ 5%)
polarized due to alignment of the dust grains with the magnetic field.
There is also evidence for an additional dust emission process, possibly
electric dipole radiation from spinning dust grains, or thermal fluctuations
of the magnetic moment of iron-bearing grains. The distribution of dust
can be estimated based on the 100 µm maps of the sky from the IRAS
satellite. Thermal dust emission dominates the Galactic foreground above
∼80 GHz.

The foregrounds are a serious problem, but by rejecting data from the Galac-
tic plane (where they are worst), using their frequency dependence, and incor-
porting data from other wavelengths, they have so far been overcome. They will
however represent a major challenge, especially for gravitational wave detection.
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