
1 Inhomogeneities

In this set of lectures, we turn our attention toward solving the evolution equa-
tions. We are interested here in the matter distribution at late times; we will
consider the CMB anisotropies next.

The “real” way to solve the Boltzmann equations is with an ODE solver,
and publicly available tools (CMBFAST; CAMB) can do this. For the purpose
of analytical understanding though, we will make the following sweeping and
over-simplifying approximations:

• Neglect the neutrino abundance: fν → 0.

• Leave out high multipoles: Θl = 0 for l ≥ 2. (Good before recombination
since optically thick to photons; after recombination not good for pho-
tons but irrelevant for matter since photons don’t scatter and contribute
negligible gravity.)

• Initially we will also ignore the baryons, but we’ll put them back in later.

• We will also leave out the cosmological constant until the end

In this case Ψ = −Φ and the Boltzmann equations for photons and CDM
become:

Θ̇0 + kΘ1 = −Φ̇;

Θ̇1 −
1

3
kΘ0 = −1

3
kΦ;

δ̇ + ikv = −3Φ̇;

v̇ + aHv = ikΦ. (1)

The Einstein equations are:

k2Φ + 3aH(Φ̇ + aHΦ) = 4πGa2(ρmδ + 4ρrΘ0)

k2Φ = 4πGa2

[

ρmδ + 4ρrΘ0 + 3
aH

k
(iρmv + 4ρrΘ1)

]

.(2)

The key numbers to keep in mind are:

• Scale factor at equality, aeq = 3.2× 10−4.

• Wavenumber that enters horizon at equality, keq ≡ aeqHeq = 0.015h
Mpc−1.

2 Scales and variables

We will distinguish between “large” scales where k � keq and “small” scales
where k � keq . In fact the only nontrivial dimensionless parameter in our
equations is k/keq . To see this, let’s define:

y =
ρm

ρr
=

a

aeq
. (3)
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We can transform independent variables to y by noting that:

dy

dη
= aHy, (4)

since y ∝ a. The Hubble constant is (neglecting Λ, which we’ll put in later):

H2 = H2
eq

y−3 + y−4

2
, (5)

so
dy

dη
= aHy = [aeqy]

[

Heq

√

y−3 + y−4

2

]

y =
keq√

2
(y + 1)1/2. (6)

Using the prime to denote y derivatives, and letting Q =
√

2 k/keq , the Boltz-
mann equations become:

Θ′

0 + (y + 1)−1/2QΘ1 = −Φ′;

Θ′

1 −
1

3
(y + 1)−1/2QΘ0 = −1

3
(y + 1)−1/2QΦ;

δ′ + i(y + 1)−1/2Qv = −3Φ′;

v′ + y−1v = i(y + 1)−1/2QΦ. (7)

To re-write the Einstein equations, we need:

aH

k
=

keq√
2

(y + 1)1/2

ky
=

(y + 1)1/2

Qy
(8)

and
4πGa2ρr

k2
=

4πGa2
eqy

2 ρeqy
−4/2

k2
eqQ

2/2
=

3a2
eqy

−2H2
eq/4

k2
eqQ

2/2
=

3

2Q2y2
. (9)

Therefore we get:

Φ + 3
y + 1

Q2y
Φ′ + 3

y + 1

Q2y2
Φ =

3

2Q2y
δ +

6

Q2y2
Θ0

Φ =
3

2Q2y2

[

yδ + 4Θ0 + 3
(y + 1)1/2

Qy
(iyv + 4Θ1)

]

.(10)

The solutions for Θ0,1, δ, v, and Φ depend only on Q and y. In general a
numerical solution is required, but we can solve these equations analytically in
two limits: Q � 1 and Q � 1.

3 Large scales

Here Q � 1. The perturbation goes through three regimes,

• Radiation era, superhorizon: y ≤ 1, aH/k � 1.

2



• Matter era, superhorizon: 1 ≤ y ≤ Q−2, aH/k > 1.

• Matter era, subhorizon: y ≥ Q−2, aH/k < 1.

One can solve for the complete evolution of the perturbation variables because
one can find a solution for aH/k � 1, and then during regime #2 we can switch
to an approximation for general aH/k but assuming y � 1.

Superhorizon perturbations. For aH/k � 1, or (y + 1)1/2/Qy � 1,
the perturbation equations become (recall ′ = d/dy is of order y−1, and that
velocities and dipoles will be ∼ Q so we need to keep the full equations in this
case):

Θ′

0 = −Φ′;

Θ′

1 =
1

3
(y + 1)−1/2Q(Θ0 − Φ);

δ′ = −3Φ′;

v′ + y−1v = i(y + 1)−1/2QΦ;

(y + 1)(yΦ′ + Φ) =
1

2
yδ + 2Θ0. (11)

(The last line is the density Einstein equation.) In the initial conditions, Θ0 =
δ/3, and as one can see from the evolution equations this will remain true.
Therefore the last equation can be re-written as:

(y + 1)(yΦ′ + Φ) =
1

2
yδ +

2

3
δ =

3y + 4

6
δ. (12)

Our initial conditions had δ = 3
2Φ, so:

δ(y) = δ(0)+

∫

δ′ dy =
3

2
Φ(0)−3

∫

Φ′ dy =
3

2
Φ(0)−3[Φ(y)−Φ(0)] =

9

2
Φ(0)−3Φ(y).

(13)
Substituting this into the Φ equation:

(y + 1)(yΦ′ + Φ) =
3

4
(3y + 4)Φ(0) − 1

2
(3y + 4)Φ. (14)

This is a linear first-order equation and it can be solved by the integrating factor
method. Separate Φ′ and Φ terms:

y(y + 1)Φ′ +
5y + 6

2
Φ =

3(3y + 4)

4
Φ(0). (15)

Normalize Φ′:

Φ′ +
5y + 6

2y(y + 1)
Φ =

3(3y + 4)

4y(y + 1)
Φ(0). (16)

The idea of the integrating factor method is that (eXΦ)′ = eX(Φ′ + X ′Φ). So
the left-hand side can become a total derivative if we find a function X whose
derivative is (5y + 6)/2y(y + 1). The required function is:

X =

∫

5y + 6

2y(y + 1)
dy =

∫ −y + 6(y + 1)

2y(y + 1)
dy = −1

2
ln(y + 1) + 3y. (17)
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Then eX = y3(1 + y)−1/2, and:

(eXΦ)′ = eX 3(3y + 4)

4y(y + 1)
Φ(0). (18)

The solution for Φ is:

Φ = e−X

∫

eX 3(3y + 4)

4y(y + 1)
Φ(0) dy =

3(1 + y)1/2Φ(0)

4y3

∫

y2(3y + 4)

(y + 1)3/2
dy. (19)

This integral can be turned into a sum of powers under the substitution ξ = 1+y.
The solution is:

Φ =
Φ(0)

10y3

[

16(1 + y)1/2 + 9y3 + 2y2 − 8y − 16
]

. (20)

(The lower limit of the integral is set by requiring Φ to be finite at y = 0.) As
y becomes large:

Φ → 9

10
Φ(0). (21)

Thus on superhorizon scales, the potentials decrease by a factor of 9/10 in the
transition from radiation to matter domination.

We would also like the densities and velocities; for y � 1 these become:

δ =
9

2
Φ(0) − 3Φ =

9

2
Φ(0) − 27

10
Φ(0) =

9

5
Φ(0), (22)

and

Θ0 =
δ

3
=

3

5
Φ(0). (23)

The velocity equation can be written as:

(vy)′ = y(v′ + y−1v) = iy(y + 1)−1/2QΦ. (24)

Therefore,

v =
1

y

∫

iy(y + 1)−1/2QΦ dy =
iQ

y

∫

ỹ√
ỹ + 1

Φ(ỹ) dỹ. (25)

This integral is complicated but at y � 1 the integral is dominated by ỹ � 1.
(The integration must start from 0 if v(0) is to be finite.) Then Φ(ỹ) = 9

10Φ(0)
and:

v =
iQ

y

9

10
Φ(0)

∫ y

0

ỹ1/2 dỹ =
iQ

y

9

10
Φ(0)

2

3
y3/2 =

3

5
iQΦ(0) y1/2. (26)

A similar procedure for Θ1 gives:

Θ1 = −1

5
QΦ(0) y1/2. (27)
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These satisfy the relation Θ1 = iv/3, i.e. the matter and radiation do not move
with respect to each other, which is expected on superhorizon scales.

Horizon crossing. We now wish to understand the late-time evolution for
y � 1 but general k/aH . We don’t need to follow the photons here because
they don’t scatter or affect the potentials. (We will need to consider them in
order to understand the CMB.) The matter and Einstein equations are:

δ′ + iy−1/2Qv = −3Φ′;

v′ + y−1v = iy−1/2QΦ;

Φ =
3

2Q2y
δ +

9

2Q3y3/2
iv. (28)

The initial conditions are that at small y,

δ → 9

5
Φ(0); v → 3

5
iQΦ(0) y1/2; Φ → 9

10
Φ(0). (29)

Horizon crossing corresponds to y ∼ Q−2.
We can simplify matters by defining the new independent variable s = Q2y.

Then:

dδ

ds
+

iv√
s

= −3
dΦ

ds
;

dv

ds
+

v

s
= i

Φ√
s
;

Φ =
3δ

2s
+

9iv

2s3/2
, (30)

with initial condition v = 3
5 iΦ(0)

√
s, so the horizon entry of all the Q � 1

modes is described by the same single differential equation with the same initial
condition.

We next make the change of dependent variables:

v = u +
2

3
is1/2Φ. (31)

Our system of equations changes to:

dδ

ds
− 2

3
Φ +

iu√
s

= −3
dΦ

ds
;

du

ds
+

u

s
+

2

3
is1/2 dΦ

ds
= 0;

Φ =
3δ

2s
+

9iu

2s3/2
− 3

s
Φ. (32)

It is convenient to solve the last equation for δ,

δ =
2

3
sΦ − 3iu

s1/2
+ 2Φ, (33)
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and then differentiate:

dδ

ds
=

2

3
Φ +

(

2

3
s + 2

)

dΦ

ds
− 3is−1/2

(

du

ds
− u

2s

)

. (34)

Substituting this into the dδ/ds equation gives:

2

3
Φ +

(

2

3
s + 2

)

dΦ

ds
− 3is−1/2

(

du

ds
− u

2s

)

− 2

3
Φ +

iu√
s

= −3
dΦ

ds
. (35)

(Cancel 2Φ/3.) This and the du/ds equation form a two-dependent-variable
system of ODEs. The initial conditions are u = 0, Φ = 9

10Φ(0). But it is
trivially seen that u = 0, Φ =constant provides a solution to the equations!
Therefore we can immediately write Φ and v as functions of y:

Φ =
9

10
Φ(0); v =

3

5
iQΦ(0) y1/2. (36)

The density can be obtained by integration of the δ′ equation:

δ(y) = δ(yi) +

∫ y

yi

δ′(ỹ) dỹ

=
9

5
Φ(0) +

∫ y

yi

[−3Φ′(ỹ) − iỹ−1/2Qv(ỹ)]dỹ

=
9

5
Φ(0) + 3[Φ(yi) − Φ(y)] − iQ

∫ y

yi

ỹ−1/2 3

5
iQΦ(0)ỹ1/2 dỹ

=
9

5
Φ(0) +

3

5
Q2Φ(0)y

=
3

5
Φ(0)(Q2y + 3). (37)

On scales well inside the horizon, the matter density becomes δ = 3
5Φ(0)Q2y.

Note that it grows in proportion to y (or a).

4 Small scales

Now we’re going to work in the opposite limit, Q � 1. In this case, there are
once again three regimes:

• Radiation era, superhorizon: y ≤ Q−1, aH/k > 1.

• Radiation era, subhorizon: Q−1 ≤ y ≤ 1, aH/k < 1.

• Matter era, subhorizon: y ≥ 1, aH/k � 1.

Radiation era: potential evolution. In the radiation era, the potential
is dominated by radiation, so we can first ignore the matter and later follow the
DM evolution equations by treating DM as test particles.
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The evolution equations become, in the y � 1 limit:

Θ′

0 + QΘ1 = −Φ′;

Θ′

1 −
1

3
QΘ0 = −1

3
QΦ;

Φ =
6

Q2y2

(

Θ0 +
3

Qy
Θ1

)

. (38)

It will be convenient to switch independent variables to:

x =
Qy√

3
=

kη√
3

(39)

and change the dependent variable from Θ1 to V ≡
√

3Θ1. (The utility of this
function will become obvious shortly.) Then:

dΘ0

dx
+ V = −dΦ

dx
;

dV

dx
− Θ0 = −Φ;

Φ =
2

x2

(

Θ0 +
1

x
V

)

. (40)

The first two lines look like a forced harmonic oscillator with unit natural fre-
quency, with the forcing depending on the radiation density. Note that the
equations only depend on x and no other parameters.

We can solve the last equation for Θ0 and eliminate it from the system:

Θ0 = −V

x
+

1

2
x2Φ, (41)

and substituting this into the other equations gives:

1

x2
V − 1

x

dV

dx
+ xΦ +

1

2
x2 dΦ

dx
+ V = −dΦ

dx
;

dV

dx
+

V

x
− 1

2
x2Φ = −Φ. (42)

The second equation allows us to eliminate dV/dx from the first equation:

1

x2
V − 1

x

(

−Φ − V

x
+

1

2
x2Φ

)

+ xΦ +
1

2
x2 dΦ

dx
+ V = −dΦ

dx
. (43)

Simplifying this gives (after dividing out a factor of 1 + x2/2):

dΦ

dx
+

1

x
Φ +

2

x2
V = 0. (44)

The next step is to turn this into a second-order differential equation for Φ.
Multiplying by x3:

x3 dΦ

dx
+ x2Φ + 2xV = 0, (45)
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and taking the derivative:

x3 d2Φ

dx2
+ 4x2 dΦ

dx
+ 2xΦ + 2x

dV

dx
+ 2V = 0. (46)

Now from the V equation, the last two terms evaluate to:

2x
dV

dx
+ 2V = −2xΦ + x3Φ. (47)

Substituting this in:

x3 d2Φ

dx2
+ 4x2 dΦ

dx
+ x3Φ = 0. (48)

We’ve seen this equation before. It is perhaps more familiar if we write it
with x3Φ as the dependent variable:

d2

dx2
(x3Φ) − 2

x

d

dx
(x3Φ) + x3Φ = 0. (49)

This is exactly the same equation that we had in the case of the tensor pertur-
bations during inflation, except that the independent variable is x (not kη) and
the dependent variable is x3Φ. We need the solution where x3Φ → 0 as x → 0,
which is:

x3Φ ∝ sin x − x cos x. (50)

At small x the right-hand side goes to x3/3. Therefore we have the solution:

Φ(x) = 3Φ(0)
sinx − x cosx

x3
. (51)

At large times, the potential is oscillatory with amplitude decaying as ∼ 1/x2.
Radiation era: matter evolution. In order to understand the matter

evolution we need to track the dark matter in this potential. At small y the
dark matter obeys the equations

δ′ + iQv = −3Φ′;

v′ + y−1v = iQΦ. (52)

We now eliminate v. Take the derivative of the first equation:

δ′′ + iQv′ = −3Φ′′, (53)

and then use the second equation to eliminate v′:

δ′′ + iQ(−iQΦ− y−1v) = −3Φ′′. (54)

However the δ equation gives

iQv = −3Φ′ − δ′, (55)
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so:
δ′′ + Q2Φ − y−1(−3Φ′ − δ′) = −3Φ′′. (56)

If we switch variables to x:

d2δ

dx2
+ 3Φ +

3

x

dΦ

dx
+

3

x

dδ

dx
= −3

d2Φ

dx2
. (57)

Rearrange:
1

x

d

dx

(

x
dδ

dx

)

= −3Φ − 3

x

dΦ

dx
− 3

d2Φ

dx2
. (58)

After the potential decays the right hand side goes to zero. In this case,
x dδ/dx goes to a constant, so:

dδ

dx
= const +

const

x
, (59)

and then:
δ = const + const ln x = const ln(const x). (60)

Numerical integration of the δ(x) equation is required to determine the con-
stants. Dodelson finds:

δ = 9.0Φ(0) ln(1.07x) = 9.0Φ(0) ln(0.62kη) = 9.0Φ(0) ln(0.62Qy). (61)

Hu & Sugiyama followed the “correct” potential evolution (without our approx-
imations) and get:

δ = 9.6Φ(0) ln(0.44kη). (62)

Radiation to matter transition. The potential from the radiation is
decaying as ∼ x−2 or ∼ y−2, but that from the matter may be significant as one
transitions to the matter era. When the matter contribution to the potential is
important, y is general, and Q is large, our equations become:

δ′ + i(y + 1)−1/2Qv = 0;

v′ + y−1v = i(y + 1)−1/2QΦ;

Φ =
3

2Q2y
δ. (63)

(The Q � 1 restriction has been used to drop the velocity term in the last
equation, and then the Φ′ term in the first equation since Φ has a Q−2 in it.)

We can use the last equation to eliminate Φ, and then the second equation
to eliminate v in favor of a second-order equation for δ. This gives the Meszaros
equation:

δ′′ +
2 + 3y

2y(y + 1)
δ′ − 3

2y(y + 1)
δ = 0. (64)

We need the two linearly independent solutions D1(y) and D2(y). This is a
hypergeometric equation, as one can recognize by multiplication:

y(y + 1)δ′′ +

(

1 +
3

2
y

)

δ′ − 3

2
δ = 0. (65)
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Now we try the usual solution:

δ =

∞
∑

r=0

bry
c+r, (66)

where c is the lowest exponent. The yc−1 term gives:

c(c − 1)b0 + cb0 = 0, (67)

which forces c = 0. The yr−1 terms give:

[r(r − 1) + r]br +

[

(r − 1)(r − 2) +
3

2
(r − 1) − 3

2

]

br−1 = 0, (68)

which simplifies to

br =
(r − 2)(r + 1/2)

r2
br−1. (69)

This is convenient because the hypergeometric series terminates at r = 2:

D1(y) = b0

(

1 +
3

2
y

)

. (70)

We will choose the normalization:

D1(y) = y +
2

3
, (71)

which is convenient at late times.
We also need the other linearly independent solution. Since c = 0 was a

double root the other solution will have a logarithm. (Of course, we already
knew that from our solution in the radiation era.) The general way to solve for
the second solution is to let δ = D1u, and write a differential equation for u.
The key is that the coefficient of u will drop out since u=constant is a solution,
and we are left with only u′ and u′′ terms:

(

y +
2

3

)

u′′ +
7
2y2 + 2y + 2

3

y(y + 1)
u′ = 0. (72)

This can be re-arranged to solve for u′′/u′, which is (ln u)′. One can rewrite
this with partial fractions:

(ln u)′ =
2

y + 2
3

+
1

y
− 1

2(y + 1)
. (73)

Integrating and exponentiating gives:

u′ ∝
(

y +
2

3

)

−2

y−1(y + 1)−1/2. (74)

10



Then integrate once more (the systematic way to integrate functions containing
square roots is to define ξ =

√
y + 1 to eliminate the square root and then use

partial fractions), and plug into δ = D1u:

D2(y) =

(

y +
2

3

)

ln

√
1 + y + 1√
1 + y − 1

− 2
√

1 + y. (75)

Of these solutions, the early time behavior is:

D1(y) → 2

3
; D2(y) → 2

3
ln

4

e3y
(y → 0). (76)

The late time behavior is:

D1(y) → y; D2(y) → 8

45
y−3/2 (y → ∞). (77)

In order to determine the density at late times we need the coefficient of D1

from matching at small y. Letting:

δ(y) = C1D1(y) + C2D2(y), (78)

we solve for the constants by linear solution of δ and δ′:

C1 =
D′

2δ − D2δ
′

D′

2D1 − D2D′

1

. (79)

The denominator at early times becomes:

D′

2D1 − D2D
′

1 → − 4

9y
, (80)

so

C1 =
3

2
δ +

3

2
y ln

4

e3y
δ′. (81)

At small y our initial condition was

δ → 9.6Φ(0) ln(0.44Qy). (82)

Plugging everything in gives:

C1 = 9.6Φ(0)

[

3

2
ln(0.44Qy) +

3

2
ln

4

e3y

]

= 14.4Φ(0) ln(0.088Q). (83)

It follows that the late-time solution for the matter is:

δ = 14.4Φ(0)y ln(0.088Q). (84)
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5 Transfer functions and growth functions

Transfer functions. The fact that δ ∝ y at late times with a coefficient that
depends on Φ(0) and Q suggests that we define the transfer function:

δ =
3

5
Q2Φ(0)T (k)y. (85)

Our large-scale result is then T (k) → 1 for Q � 1, hence the choice of normal-
ization. On small scales, our results above suggest:

T (k) → 24Q−2 ln(0.088Q) = 12
k2

eq

k2
ln

k

8keq
. (86)

(Note the 12 and 8 are not exact.)
In the regime k ∼ keq we have to solve the equations numerically. This was

done by Bardeen, Bond, Kaiser, and Szalay (BBKS 1986), who fit the transfer
function with the formula:

T (k) =
ln(1 + 2.34q)

2.34q

[

1 + 3.89q + (16.2q)2 + (5.47q)3 + (6.71q)4
]−1/4

, (87)

where they defined:

q =
k

Ωmh2 Mpc−1 =
13.7k

keq
= 9.7Q. (88)

The BBKS formula is useful for rough estimates but a numerical Boltzmann
code (or at least the updated Eisenstein & Hu fitting formula) should be used
for detailed calculations.

The density equation can then be written as:

δ =
3

5
Q2Φ(0)T (k)

a

aeq
. (89)

One often further simplifies this by eliminating Q2 and aeq :

Q2

aeq
=

2k2

aeqk2
eq

=
2k2

a3
eqH

2
eq

=
k2

Ωm0H2
0

, (90)

where the last equality follows from the Friedmann equation, and the fact that
matter makes up half the energy density at equality. Then:

δ =
3k2

5Ωm0H2
0

Φ(0)T (k)a. (91)

Growth functions. We’ve assumed above that the Universe remains matter-
dominated after the epoch of equality. In reality, at low redshift an additional
component (probably the cosmological constant Λ) becomes dominant. In this
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case, we must use Eq. (91) as an initial condition for the behavior of perturba-
tions at later times. The density and velocity evolution equations for the matter
on subhorizon scales are:

δ̇ + ikv = 0,

v̇ + aHv = ikΦ. (92)

It’s convenient to use the scale factor a as the independent variable:

dδ

da
+

ik

a2H
v = 0,

dv

da
+

v

a
=

ik

a2H
Φ. (93)

The Poisson equation, k2Φ = 4πGa2ρmδ, allows us to eliminate Φ from the
second equation:

dv

da
+

v

a
=

4πiGρm

Hk
δ =

3iHΩm(a)

2k
δ. (94)

This can be substituted into the first equation to give a second-order equation
for δ:

d2δ

da2
+

(

d ln H

da
+

3

a

)

dδ

da
− 3Ωm(a)

2a2
δ = 0. (95)

Note that k does not appear in this equation. Therefore whatever the behavior
at late times is, it is local in real space.

Before Λ becomes important, Ωm(a) → 1 and d ln H/da → −3/(2a). In this
case the equation above becomes

d2δ

da2
+

3

2a

dδ

da
− 3

2a2
δ = 0. (96)

This is a dimensionally homogeneous equation with solutions δ ∝ a and δ ∝
a−3/2. One can find the solution with δ = a at early times and numerically
integrate it forward to get the growth function D(a). The matter density at late
times is then given by:

δ =
3

5
Q2a−1

eq Φ(0)T (k)D(a). (97)

This is the form in which the density equation is usually written.
Since Φ(0) = 2

3ζ, the matter power spectrum is then:

∆2
δ(k, a) =

[

2

3

3k2

5Ωm0H2
0

Φ(0)T (k)D(a)

]2

∆2
ζ(k), (98)

which simplifies to:

∆2
δ(k, a) =

4

25
T (k)2D(a)2

k4

Ω2
m0H

4
0

∆2
ζ(k). (99)
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The ΛCDM model. In the Einstein-de Sitter case we could directly in-
tegrate the growth equation (Eq. 95) to get D(a) = a. With the cosmological
constant an exact integration is no longer possible. The matter density as a
function of scale factor is:

Ωm(a) =
ρm

ρtot
=

Ωm0a
−3

Ωm0a−3 + ΩΛ0
, (100)

and:
d ln H

da
= − 3

2a
Ωm(a). (101)

The growth equation then gives:

d2D(a)

da2
+

3

2a

(

− Ωm0a
−3

Ωm0a−3 + ΩΛ0
+ 2

)

dD(a)

da
− 3

2a2

Ωm0a
−3

Ωm0a−3 + ΩΛ0
D(a) = 0.

(102)
This can be integrated; for Ωm0 = 0.3, ΩΛ0 = 0.7, the result is that initially
D(a) = a, but at late times D(a) < a and today at a = 1 we have D(1) = 0.78.
This “growth suppression” is the result of the cosmological constant causing the
Universe to (i) accelerate expansion so that large a is reached before the density
perturbations can grow; and (ii) dilute the dark matter Ωm(a) < 1 so that the
potential wells are not as deep as they would have been in Einstein-de Sitter.

The suppression of D(a) has been measured via the integrated Sachs Wolfe
effect (next set of lectures). It is an important test of dark energy models
because different theories produce different amounts of suppression.

6 Baryonic effects in the transfer function

Up until now we have considered the simplest model universe with no baryons
and neutrinos. Of course, this is wrong and we’re going to fix these problems
now. We’ll address the baryons first, and then discuss the neutrinos.

In the limit where Ωb � Ωm, the baryons have no effect on the transfer
function T (k) except to provide a source of scattering. In the real Universe,
Ωb < Ωm, but not �. So we will first evaluate, in a very crude approximation,
what the baryons do to the transfer function. Along the way we will discover a
powerful new cosmological probe.

Tight coupling. Let us first consider the behavior of the baryons before
recombination. If τ̇ is large, then the baryons are forced to move at the same
velocity as the photons:

vb = −3iΘ1. (103)

It follows that the baryon-to-photon ratio remains fixed. Mathematically,

δ̇b = −3Φ̇ − ikvb = −3Φ̇ − 3ikΘ1 = 3Θ̇0; (104)

and since δb = 3Θ0 initially, the baryons maintain δb = 3Θ0 as long as τ̇ remains
large, i.e. until recombination. (Except for diffusion which we’ll consider later.)
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Since the photons and baryons move together, and with no anisotropic stress
Θ2, we can think of them as forming a photon-baryon fluid.

On large scales, kηrec � 1, all of this is of no importance because the baryon
and dark matter density perturbations and velocities are the same, δb = δc and
vb = vc, until recombination. (After recombination the baryons and DM are
both cold and behave similarly.) However on small scales, kηrec � 1, the
situation is very different. Let’s consider a wavenumber that enters the horizon
before equality, k > keq . (Note that keq ≈ 1.5η−1

rec, so this is true for most modes
that were inside the horizon at recombination.) Then before recombination
(a < aeq) and inside the horizon, we have (from the Einstein equation):

Φ =
6

Q2y2
Θ0 =

6

(kη)2
Θ0. (105)

We can then solve for the photon temperature perturbation Θ0:

Θ0 =
(kη)2

6
Φ. (106)

But for kη � 1, we already solved for the potential:

Φ = 3Φ(0)
sinx − x cosx

x3
→ −3Φ(0)

cosx

x2
= −9Φ(0)

cos(kη/
√

3)

(kη)2
. (107)

The temperature perturbation is thus:

Θ0 → −3

2
cos

kη√
3

Φ(0). (108)

Since Φ is decaying at kη � 1, the photon dipole is:

Θ1 = − Θ̇0

k
= −

√
3

2
sin

kη√
3

Φ(0). (109)

The oscillatory behavior is not surprising since in the absence of potentials
and with enough scattering to eliminate Θ2, the photon equations are:

Θ̇0 = −kΘ1;

Θ̇1 =
1

3
kΘ0. (110)

This is the equation of a harmonic oscillator with (conformal) angular frequency
k/

√
3. Physically it corresponds to a wave in the photon-baryon fluid. The

sound speed is
√

dp

dρ
=

√

d(ρ/3)

dρ
=

1√
3
, (111)

since the photons provide both the restoring force (radiation pressure) and the
inertia (ργ � ρb).
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The above differential equations for Θ0 and Θ1 remain valid even into the
matter-dominated era, so long as ργ � ρb (which remains valid until recombi-
nation, with minor corrections that are in the numerical codes). They are valid
even at recombination. Therefore on small scales, k � keq :

δb(ηrec) = −9

2
cos

kηrec√
3

Φ(0)

vb(ηrec) =
3
√

3

2
i sin

kηrec√
3

Φ(0). (112)

Post-recombination evolution. Within the horizon and after recombina-
tion, the dark matter and baryon perturbations become: (use matter domination
to conclude a ∝ η2 so aH = 2/η)

δ̇c = −ikvc;

v̇c = −2

η
vc + ikΦ;

δ̇b = −ikvb;

v̇b = −2

η
vb + ikΦ;

k2Φ = 4πGa2(ρbδb + ρcδc). (113)

The last equation can be re-written as: (using the Friedmann equation)

k2Φ =
3

2
a2H2[Ωb(a)δb + Ωc(a)δc] =

6

η2
[Ωb(a)δb + Ωc(a)δc]. (114)

Now during the matter-dominated era, Ωb(a) and Ωc(a) are fixed, and sum to
1:

Ωb(a) + Ωc(a) = 1. (115)

In order to solve the post-recombination evolution, we will take a linear com-
bination of the baryon and CDM equations. We define the total density and
velocity:

δm = Ωb(a)δb + Ωc(a)δc

vm = Ωb(a)vb + Ωc(a)vc, (116)

and the difference density and velocity:

δd = δb − δc

vd = vb − vc. (117)

These obey the differential equations:

δ̇m = −ikvm

v̇m = −2

η
vm +

6i

kη2
δm

δ̇d = −ikvd

v̇d = −2

η
vd. (118)
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We have decoupled the total matter density and velocity equations (δm, vm) from
the baryon-CDM difference (δd, vd). The latter are not sourced by gravity, and in
fact have no growing modes. This leads us to the important conclusion that even
though baryons and CDM are separated at recombination, the relative density
δb − δc does not grow, and instead remains of order its value at recombination,
∼ 10−3. In studies of large scale structure and galaxy formation it is usually
neglected.

Instead it is usually sufficient to follow the total matter perturbations δm, vm,
since by low redshifts (where galaxies form and are observable) the baryons and
CDM perturbations are the same. These equations are the same as what we
derived for CDM with negligible baryons, and the conversion to a second-order
ODE for δm(a) is straightforward:

d2δm

da2
+

3

2a

dδm

da
− 3

2a2
δm = 0. (119)

The solutions are δm ∝ a, a−3/2. The general solution, starting from arec, is:

δm =

[

3δm(arec)

5arec
+

2

5

dδm(arec)

da

]

a+

[

2a
3/2
recδm(arec)

5
− 2a

5/2
rec

5

dδm(arec)

da

]

a−3/2.

(120)
The first term dominates at late times. In order to compute it we need both
baryon and CDM terms. In these notes I will take the CDM contribution
from our solution neglecting baryons, which is not self-consistent but gives a
qualitatively correct answer. (It however, is not accurate to first order in Ωb.)

For the CDM:

δc(arec) =
3k2

5Ωm0H2
0

Φ(0)Tc(k)arec, (121)

where Tc(k) is the transfer function that we computed for CDM only. The
derivative is dδc/da = δc/a since δc ∝ a. We then get:

3δc(arec)

5arec
+

2

5

dδc(arec)

da
=

3k2

5Ωm0H2
0

Φ(0)Tc(k). (122)

For the baryons, on small scales:

δb(arec) = −9

2
cos

kηrec√
3

Φ(0). (123)

The derivative is:

dδb(arec)

da
= − ikη

2arec
vb(arec) =

3
√

3

4arec
kηrec sin

kηrec√
3

Φ(0). (124)

Since by hypothesis kηrec � 1, the second term dominates, and we get:

3δb(arec)

5arec
+

2

5

dδb(arec)

da
=

3
√

3

10arec
kηrec sin

kηrec√
3

Φ(0). (125)
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The final result for the density at a � arec is:

δm(a) =
3k2

5Ωm0H2
0

Φ(0)T (k)a, (126)

where the overall transfer function is:

T (k) = Ωc(a)Tc(k) +

√
3

2
Ωb(a)

Ωm0H
2
0ηrec

karec
sin

kηrec√
3

. (127)

We can simplify by using η = 2/aH during matter domination and then the
Friedmann equation:

η2
rec =

4

a2
recH

2
rec

=
4arec

Ωm0H2
0

. (128)

Using this, and Ωc(a) = Ωc/Ωm, etc.:

T (k) =
Ωc

Ωm
Tc(k) + 2

Ωb

Ωm

sin(kηrec/
√

3)

kηrec/
√

3
. (129)

Recall that this is only good for kηrec > 1; as k → 0 we still have T (k) → 1.
This is a rather crude form for the transfer function, but it serves to illustrate

the main points. First, in models with baryons there is a suppression of the
transfer function at small scales since Ωc/Ωm < 1. (In reality the suppression is
stronger.) Secondly, there is an oscillation imprinted on the transfer function,
and hence on the matter power spectrum P (k), with a period:

∆k =
2π

√
3

ηrec
≈ 0.04 Mpc−1. (130)

The above equation incorrectly suggests that the oscilaltions go on forever; this
is in fact not correct because we haven’t accounted for damping of the acoustic
oscillation by diffusing photons (i.e. finite τ̇ ). Also since the baryons have finite
inertia, so that ρb/ργ is significant at recombination, there is a slight slowing of
the sound speed, so that ∆k is actually a bit larger than the above estimate.

Baryon acoustic oscilations. These oscillations are commonly referred
to as the baryon acoustic oscillations or BAO.

The oscillations are important because, assuming that we understand re-
combination, we can compute ∆k in comoving units. We can then look for
these features in the power spectrum of the galaxy distribution. It provides a
standard ruler: observation of the angular scale, combined with knowledge of
the comoving length scale ∆k−1, enables determination of the comoving angular
diameter distance. The oscillations are a distinctive feature, not easily confused
by the messy physics of galaxy formation.

To be more quantitative: let’s define the correlation function of the matter,

ξ(x) = 〈δ(0)δ(x)〉, (131)
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which is the Fourier transform of the power spectrum:

ξ =

∫

d3k

(2π)3
Pδ(k)eikx =

∫

∆2
δ(k)

sin kx

kx
d ln k. (132)

This correlation function will have a bump at the BAO scale,

s =
2π

∆k
≈ 150 Mpc comoving. (133)

Using any tracer of the matter distribution, e.g. galaxies, one can then search
for an excess in pairs of galaxies at any separation and thus identify the scale
s. In the transverse direction, if the excess pairs occur at an angular separation
θ, we have:

θ =
s

r
r =

s

θ
, (134)

where r is the comoving angular diameter distance. The scale s must be com-
puted by fitting to the CMB data in order to use it as a standard ruler.

If we have accurate redshifts for our galaxies, we can look for excess pairs in
the radial direction as well:

∆z =
s

dχ/dz
= sH(z). (135)

The strength of the BAO feature depends on galaxy formation and nonlinear
corrections (more on this later), but its position is remarkably robust, with
simulations typically finding shifts of ∼ 1%. The feature was first detected in
2005 by Eisenstein et al. using 46748 elliptical galaxies in the Sloan Digital Sky
Survey. They find:

[

r2 z

H(z)

]1/3

(z = 0.35) = 1370± 64 Mpc. (136)

Future surveys will have more volume, and a higher density of galaxies. This
will enable more precise determination of the distance scale. Because volume
is required to get good measurements of the BAO scale, the constraints from
BAO will be most useful at high redshift.

7 Neutrinos

Up to this point, we have not considered the neutrinos. But they are there
(we know from BBN 4He) and the neutrino oscillation data show that some of
them are massive. So here we will consider, at order of magnitude level, what
neutrinos do to the power spectrum.

Basic scales. Suppose for simplicity that the neutrino masses are nearly
degenerate, mν � (∆m2

ν)1/2. The average momentum of a neutrino is:

〈p〉 =
7π4

135ζ(3)
Tν = 4.2Tν . (137)
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The neutrino temperature redshifts as 1/a, or more explicitly:

Tν = Tν0a
−1, Tν0 = 1.95 K. (138)

The neutrinos go nonrelativistic when 〈p〉 ∼ mν , or:

anr ∼ 4.2Tν0

mν
= 0.007

( mν

0.1 eV

)

−1

. (139)

After this time, the neutrinos start to affect the expansion of the Universe as if
they were nonrelativistic matter. Their density today is:

Ων0 =
3H2

0

8πG
nνmν = 0.006

( mν

0.1 eV

)

. (140)

Thus the neutrinos are a minority constituent. They are also a form of dark
matter in the sense that they are noninteracting. But they don’t act like CDM,
because they are “hot” (HDM): they have a huge velocity dispersion. The
typical velocities of the neutrinos can be obtained from their momenta, which
redshift as ∼ 1/a:

〈vν〉 =
〈p〉
mν

=
anr

a
∼ 2000a−1

( mν

0.1 eV

)

−1

kms−1. (141)

Today the neutrinos are moving at of order 1000 km/s or larger, which is greater
than the escape velocities of structures (with the possible exception of galaxy
clusters). So unlike CDM the neutrinos are not collected into galaxies.

A key quantity of interest for us will be the typical comoving distance that
a neutrino can travel in a Hubble time (the “free-streaming” length). During
the matter-dominated era, this is:

L ∼ 〈vν〉
aH

=
anr

a2H
=

anr

a1/2Ω
1/2
m0 H0

∼ 40a−1/2
( mν

0.1 eV

)

−1

h−1 Mpc. (142)

The key here is the negative exponent of a: the free-streaming length declines
as the Universe expands. At the nonrelativistic transition, this is:

Lnr ∼ 500
( mν

0.1 eV

)

−1/2

h−1 Mpc. (143)

Growth of structure with neutrinos. Let’s consider the matter evolution
equations again during the matter-dominated era:

δ̇m = −ikvm;

v̇m + aHvm = ikΦ;

Φ =
3

2

(

aH

k

)2

Ωeff (a)δm. (144)

Here Ωeff is the fraction of the critical density in matter that can cluster.
For scales of interest this always includes CDM and baryons. On scales larger
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than the free-streaming length k < L−1, neutrinos cannot transport momentum
and are cold: they contribute to Ωeff (a) in this equation. However on scales
smaller than the free-streaming length k > L−1, the neutrinos will be smoothly
distributed and hence don’t contribute to the potential (but they do contribute
to the mean density and hence to H2 via the Friedmann equation). In this case
they don’t contribute to Ωeff (a). That is:

Ωeff (a) =

{

1 k < L−1

1 − Ων0/Ωm0 k > L−1 . (145)

We can solve the density equation by converting it to second-order:

δ̈m + aHδ̇m − 3

2
(aH)2Ωeff δm = 0. (146)

Using aH = 2/eta:

δ̈m +
2

η
δ̇m − 6

η2
Ωeff δm = 0. (147)

This is dimensionally homogeneous, so we take δm ∝ ηc as a solution:

c(c − 1) + 2c − 6Ωeff = 0, (148)

or

c =
−1±

√

1 + 24Ωeff

2
. (149)

Taking the growing mode (+) and noting that η ∝ a1/2, we get:

δm ∝ a(−1+
√

1+24Ωeff )/4. (150)

On large scales, k < L−1, we have Ωeff = 1 and hence:

δm ∝ a, (151)

as expected. On small scales, Ωeff = 1 − Ων0/Ωm0. If we Taylor-expand the
exponent for small Ων0, we get:

δm ∝ a1−3Ων0/5Ωm0 . (152)

In terms of the neutrino mass:

d ln δm

d ln a
= 1 − 0.013

( mν

0.1 eV

)

. (153)

The neutrinos thus produce a tiny suppression of the growth of structure on
small scales. But this occurs in an exponent, so if the neutrino mass is 0.1
eV then for every e-fold of expansion the growth of structure is suppressed by
another 1.3%. For L−1

nr < k < L−1
0 , which is the usual regime probed by large

scale structure, this suppression starts at anr (more accurately, the effect of
neutrino masses begins then) and ends when k = L−1, i.e. when

a = anr(kLnr)
2. (154)
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Thus the number of e-folds of expansion during which the modified exponent is
applicable is 2 ln(kLnr), and:

∆δm

δm
= −0.026

( mν

0.1 eV

)

ln(kLnr). (155)

The change in the matter power spectrum is twice this:

∆P (k)

P (k)
= −0.052

( mν

0.1 eV

)

ln(kLnr). (156)

So even a small neutrino mass can have a big impact on the late-time distribution
of matter. In future lectures we’ll discuss large scale structure and weak lensing,
the two major ways of measuring this effect on the neutrino mass.
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