
1 Generation of perturbations in inflation

In this set of lectures we will consider how the primordial perturbations could
have been produced during the inflationary epoch. We will begin with the
gravitational waves, since these are simpler, and then consider the scalar per-
turbations.

2 Gravitaitonal waves

Tensor perturbations during inflation. If the only significant matter field
during inflation is the scalar field, which has no anisotropic stress at first order
in perturbation theory, then the equation describing the tensor perturbations
during inflation is:

Ë + 2aHĖ + k2E = 0. (1)

We are going to solve this equation on a de Sitter background, i.e. one in which
H=constant. In this case, the scale factor a is related to η via:

η = −
1

aH
, (2)

so that:

Ë −
2

η
Ė + k2E = 0. (3)

(Recall that η is negative!) We can understand the classical evolution of gravi-
tational waves by solving this equation. The solution can be taking power series
solutions in η:

E =
∞
∑

r=0

arη
c+r. (4)

The various powers of η in Eq. (3) give:

c(c − 3)a0 = 0;

(c + 1)(c − 2)a1 = 0;

(c + r)(c + r − 3)ar + k2ar−2 = 0 (r ≥ 2). (5)

The first equation here forces c = 0 or c = 3. The second equation then forces
a1 = 0. The third equation implies the recursion:

ar =
−k2

(c + r)(c + r − 3)
ar−2, (6)

which has the solution ar = 0 for odd r and

ar = (−1)r/2kr c!

c − 1

c + r − 1

(c + r)!
a0 (7)

for even r (prove by induction).
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There are now two linearly independent solutions which we can normalize
by setting a0 = 1 (c = 0) or a0 = k3/3 (c = 3). (These normalizations are
arbitrary but convenient.) The first (c = 0) solution is then (let r = 2s):

E = −

∞
∑

s=0

(−1)s(2s − 1)
(kη)2s

(2s)!
. (8)

Now inside the sum the operator 2s can be written as η d/dη (since this pulls
down the exponent of η), which we can pull out:

E = −

(

η
d

dη
− 1

) ∞
∑

s=0

(−1)s (kη)2s

(2s)!
. (9)

The sum on the right is easily recognized as the Taylor expansion of cos(kη).
We can then simplify to:

E = −

(

η
d

dη
− 1

)

cos(kη) = cos(kη) + kη sin(kη). (10)

This is one of the two linearly independent solutions. The other comes from
c = 3:

E =

∞
∑

s=0

(−1)s(2s + 2)
(kη)2s+3

(2s + 3)!
. (11)

We use the same trick of extracting 2s + 2 as an operator:

E =

(

η
d

dη
− 1

) ∞
∑

s=0

(−1)s (kη)2s+3

(2s + 3)!
. (12)

If one included an s = −1 term the sum would be the Taylor expansion of
− sin(kη). Without this term the sum is kη − sin(kη). Thus:

E =

(

η
d

dη
− 1

)

[kη − sin(kη)] = −kη cos(kη) + sin(kη). (13)

Therefore at the classical level, the gravitaitonal wave amplitude during
inflation behaves as a linear combination of the two possible perturbations:

E(η) = EC [cos(kη) + kη sin(kη)] + ES [−kη cos(kη) + sin(kη)]. (14)

As one goes toward the end of inflation, η → 0, we find E(0) = EC .
Semiclassical calculation. In quantum mechanics one should not think

of E(η) as a precisely defined quantity, rather it is a quantum operator. In
the Heisenberg picture (our choice) it is time-dependent and satisfies Eq. (3)
as an operator equation. The variables ES and EC (the coefficients in E) are
promoted to time-independent operators. This is really a semiclassical picture
since it is only valid in linear perturbation theory and we haven’t quantized the
background spacetime (actually we don’t know how to do the latter).
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We should be able to statistically predict the distribution for the final state
E(0) if we know the initial state of the system. In the absence of anything
better to do we will assume that the gravitaitonal wave begins in its asymptotic
ground state at early times. To understand what this means, let’s write the
solution for E(η) at −kη ≫ 1:

E(η) → −kη[−EC sin(kη) + ES cos(kη)]. (15)

Recalling that η = −1/aH :

E(η) →
k

aH
[−EC sin(kη) + ES cos(kη)]. (16)

At these early times the gravitaitonal wave is subhorizon (in causal contact)
and oscillating. The EC and ES operators are quadratures, i.e. they are the
gravitational wave amplitudes a quarter-cycle apart. They are thus analogous
to the x and p/mω operators in the quantum harmonic oscillator.

Asymptotically one can define an energy density,

ρgw =
ω2

16πG
〈|h2

+| + |h2
×|〉, (17)

where the average must be taken over several cycles and several wavelengths to
make sense, ω is the gravitational wave frequency. The strains are defined as:

Eij =





h+ h× 0
h× −h+ 0
0 0 0



 . (18)

Recalling that for one of the two circular polarizations:

h+ = −

√

3

8
E; h× = ∓i

√

3

8
E, (19)

and noting that the physical frequency is ω = k/a (gravitational waves propa-
gate at the speed of light!), we can re-write the energy density as:

ρgw =
3k2

64πGa2
〈|E|2〉. (20)

For a portion of the Universe with unit comoving volume, the total energy in
the k, m gravitational wave mode is:

Ugw = ρgwa3V =
3k2a

64πG
〈|E|2〉 =

3k4

128πGaH2
〈|E2

C | + |E2
S |〉. (21)

(Factor of 1/2 from the averages of cos2 and sin2.) Now in the ground state of
a simple harmonic oscillator, Ugw should equal ω/2, or k/2a:

k

2a
=

3k4

128πGaH2
〈|E2

C | + |E2
S |〉. (22)
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Thus:

〈|E2
C | + |E2

S |〉 =
64πGH2

3k3
. (23)

The sinelike and cosinelike quadratures of a harmonic oscillator have statistically
equal amplitude 〈x2〉 = 〈(p/mω)2〉, so we may set 〈|E2

C |〉 = 〈|E2
S |〉. Then since

E(0) = EC , we finally have:

〈|E(η = 0)|2〉 =
32πGH2

3k3
. (24)

In the real Universe we do not observe just a single Fourier amplitude, rather
we observe the superposition of many, which by homogeneity are independent.
In order to describe this, we define the power spectrum of E to be the contribu-
tion to the variance of E per Fourier mode:

PE(k) = 〈|E(η = 0)|2〉 =
32πGH2

3k3
, (25)

We will often write the power spectrum in terms of the variance per logarithmic
interval in k:

Var(E) =

∫

∆2
E(k)

dk

k
, (26)

or

∆2
E(k) =

4πk3

(2π)3
PE(k) =

k3PE(k)

2π2
. (27)

[The density of Fourier modes for unit volume is (2π)−3, hence the denominator,
and the volume in k-space per logarithmic interval in k is 4πk3.] We find:

∆2
E(k) =

16GH2

3π
. (28)

This is often written in terms of the strain h, each component of which is
√

3/8
of E and received contribution from both m = ±2 modes. Therefore:

∆2
h(k) =

3

4
∆2

E(k) =
4GH2

π
. (29)

Note: for tensor perturbations there is a subtlety since h is not a scalar and
we have to carefully define its variance. We must define it so that for a plane
gravitational wave the variance is 〈h2

+ + h2
×〉/2. The isotropic version of this

definition is:

Var(h) =
1

4
〈hijhij〉. (30)

The result that ∆2
h(k) = 4GH2/π is one of the key results in early-universe

cosmology. It tells us that the quantum fluctuations of the gravitational waves
(ω/2 per mode) were stretched during inflation to cosmological scales. The value
of H in Eq. (29) refers to the time the fluctuations leave the horizon (η ≈ −1/k)
since long before then the gravitaitonal waves behave adiabatically (the number
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of quanta per mode does not change) and after then the waves are outside the
horizon and their evolution is frozen.

If one combines Eq. (29) with the Friedmann equation for H , one gets:

∆2
h(k) =

32

3
G2ρinf , (31)

where ρinf is the energy density during inflation. Thus, if the primordial grav-
itational waves can be detected they directly tell us ρinf . This is one reason
why these waves are highly sought-after by the CMB observers. The other –
arguably more important – is that such gravitational waves, if observed with a
nearly scale-invariant spectrum (i.e. ∆2

h varying slowly with k) would provide
the best evidence that inflation really happened.

3 Scalar perturbations

We now consider the scalar perturbations generated during single field inflation.
In particular, we first note that the perturbations must be adiabatic. This is
because in different, causally separated parts of the Universe, there is a single
slowly-rolling scalar field, and when it reaches the minimum of its potential
and decays there is no way for different parts of the Universe to know that
there is a large-scale inhomogeneity. These different parts of the Universe must
follow along the same pressure-density curve p(ρ), and will produce the same
photon:neutrino:baryon:CDM ratio. (An exception occurs for multiple scalar
fields, in which case the value of field φ2 when φ1 reaches the minimum of its
potential could affect the outcome of reheating.)

Perturbations near horizon scale. The evolution equation for the scalars
was found to be:

∇µ∇
µφ = V ′(φ). (32)

As an exercise you will do the perturbation theory around the background value,

φ = φ(0) + δφ, (33)

and get:

δφ̈ + 2aHδφ̇ + [k2 + a2V ′′(φ(0))]δφ = 2φ̈(0)Ψ + 2φ̇(0)(Ψ̇ + aHΨ). (34)

Now of the terms in brackets,

a2V ′′(φ(0))

k2
=

(

aH

k

)2
V ′′

H2
≈

(

aH

k

)2
3V ′′

8πGV
= 3

(

aH

k

)2

η̄. (35)

Since η̄ ≪ 1, when the perturbations are inside or near the horizon scale (k ≥
aH) we only need to keep the k2 term:

δφ̈ + 2aHδφ̇ + k2δφ = 2φ̈(0)Ψ + 2φ̇(0)(Ψ̇ + aHΨ). (36)
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Now at horizon crossing k ∼ aH the right-hand side is of order aHΨφ̇(0). But
at the horizon scale, Ψ ∼ δρ/ρ and φ̇(0) ∼ aV ′/H , so:

aHΨφ̇(0) ∼ aH
δρ

ρ

aV ′

H
∼ a2 V ′δρ

ρ
∼ a2 V ′2δφ

V
∼ (aH)2

V ′2δφ

GV 2
∼ (aH)2ǫδφ.

(37)
Since k ∼ aH the right-hand side is negligible compared to the left-hand side
for ǫ ≪ 1. Thus if we are near the horizon we may drop the gravitational terms
in the scalar equation:

δφ̈ + 2aHδφ̇ + k2δφ = 0. (38)

[Warning: this won’t work far outside the horizon because of factors of k/aH .]
Quantum scalar fluctuations. Equation (38) is just like the equation we

wrote down for the gravitational wave amplitude, so it has the same solution:

δφ(η) = φC [cos(kη) + kη sin(kη)] + φS [−kη cos(kη) + sin(kη)]. (39)

At early times, the fluctuations in the scalar field have an energy density:

ρδφ = ω2〈|δφ2|〉. (40)

(The kinetic energy density is ω2δφ2/2, and the gradient energy density is the
same.) The scalar field fluctuations propagate at the speed of light (no mass
term) so ω = k/a:

ρδφ =
k2

a2
〈|δφ2|〉. (41)

The energy in unit comoving volume is:

Uδφ = k2a〈|δφ2|〉 →
k4

aH2
〈|φ2

C | + |φ2
S |〉. (42)

Just as in the gravitational wave case, we set this equal to ω/2 = k/2a, and
take one of the quadratures:

〈|φ2
C |〉 =

H2

2k3
. (43)

After horizon exit, i.e. k|η| < 1, φ → φC and so the scalar field power spectrum
is:

Pδφ(k) =
H2

2k3
, (44)

and the variance per ln k is obtained by multiplying by k3/2π2:

∆2
δφ(k) =

H2

4π2
. (45)

However, unlike for the gravitational wave case, we’re not done because the
scalar field will evolve outside the horizon. In particular, it will decay, and
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since this happens outside the horizon we need the full machinery of GR to
understand what this implies about the primordial potential.

The curvature perturbation. In order to follow the evolution through
the later stages of inflation, reheating, and the early radiation era, we need a
new variable ζ. This is called the curvature perturbation and is defined by:

ζ ≡
aHj

ik(ρ̄ + p̄)
+ Φ. (46)

To understand the importance of the curvature perturbation, we will need the
continuity equation T µν

;ν = 0; the µ = 0 component gives:

δρ̇ = −3aH(δρ + δp) − 3(ρ̄ + p̄)Φ̇ − ikj. (47)

From the Einstein equations:

k2Φ + 3aH(Φ̇ − aHΨ) = 4πGa2δρ

Φ̇ − aHΨ = 4πGa2j/ik, (48)

on large scales (k/aH ≪ 1) we may drop the k2 term in the first equation and
get:

δρ = 3aH
j

ik
. (49)

Then:

ζ ≡
δρ

3(ρ̄ + p̄)
+ Φ, (50)

and in the density equation we have:

−ikj =
k2δρ

3aH
. (51)

and we can substitute

δρ̇ = −3aH(δρ + δp) − 3(ρ̄ + p̄)ζ̇ + (ρ̄ + p̄)∂η

(

δρ

ρ̄ + p̄

)

+
k2δρ

3aH
. (52)

Now the last term is negligible for k/aH ≪ 1. Also the derivative ∂η acting on
δρ cancels the left-hand side, so:

0 = −3aH(δρ + δp) − 3(ρ̄ + p̄)ζ̇ + (ρ̄ + p̄)∂η

(

1

ρ̄ + p̄

)

δρ. (53)

Solving for ζ̇ gives:

ζ̇ = aH
δρ + δp

ρ̄ + p̄
+

d(ρ̄ + p̄)/dη

3(ρ̄ + p̄)2
δρ. (54)

But we know from continuity that:

aH = −
dρ̄/dη

3(ρ̄ + p̄)
, (55)
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so:

ζ̇ =
1

3(ρ̄ + p̄)2

[

dp̄

dη
δρ −

dρ̄

dη
δp

]

. (56)

But we argued earlier that the perturbations must be adiabatic. Therefore δp
and δρ are in the ratio:

δp : δρ =
dp̄

dη
:

dρ̄

dη
, (57)

which means that ζ̇ = 0. Therefore ζ is conserved outside the horizon (for
adiabatic perturbations only).

The value of the curvature perturbation. Now we need the relation
between δφ exiting the horizon and the curvature perturbation. The stress-
energy tensor for a scalar field was:

[Tφ]µν = (∇µφ)(∇νφ) −
1

2
gµνgαβ(∇αφ)(∇βφ) − gµνV (φ). (58)

In the Newtonian gauge, gµν is diagonal, and the momentum density is

ĵi = −a2φ̇∂iφ. (59)

In Fourier modes,
j = −ika2φ̇(0)δφ. (60)

The curvature perturbation is then: (recall Φ → 0 at the horizon, and for a
scalar ρ̄ + p̄ = a2φ̇(0)2)

ζ =
aHj

ik(ρ̄ + p̄)
=

−a3Hφ̇(0)δφ

a2φ̇(0)2
=

−aHδφ

φ̇(0)
. (61)

This means that the primordial curvature perturbation power spectrum is:

∆2
ζ(k) =

(

−aH

φ̇(0)

)2

∆2
δφ(k) =

(

−aH

φ̇(0)

)2
H2

4π2
. (62)

Recall that

φ̇(0) = −
aV ′

H
, (63)

so:
−aH

φ̇(0)
=

H2

V ′
=

8πGV

V ′
=

√

4πG

ǫ
. (64)

The final result for the curvature perturbation power spectrum is:

∆2
ζ(k) =

GH2

πǫ
. (65)

Initial conditions during radiation epoch. The curvature perturbation
relates to the potential perturbation during radiation domination as follows. We
know that:

ζ =
aHj

ik(ρ̄ + p̄)
+Φ =

aH(4/3)ρ̄rvb

(4/3)ikρ̄r
+Φ =

aHvb

ik
+Φ =

aH(ikΦ/2aH)

ik
+Φ =

3

2
Φ.

(66)
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Thus the primordial gravitational potential perturbations are Φ = 2
3ζ, and have

power spectrum:

∆2
Φ(k) =

4GH2

9πǫ
. (67)

4 Primordial fluctuations from specific models

Properties of primordial fluctuations. We will now review the predictions
of specific inflationary models for the primordial fluctuations. We will first
introduce some notation. The scalar spectral index ns is given by:

ns ≡ 1 +
d ln ∆2

ζ(k)

d ln k
. (68)

(The 1 is convention.) The running index αs is:

αs ≡
d2 ln ∆2

ζ(k)

(d ln k)2
. (69)

If the initial conditions are almost scale-invariant they can be expanded as a
power series,

ln ∆2
ζ(k) = ln ∆2

ζ(k⋆) + [ns(k⋆) − 1] ln
k

k⋆
+

1

2
αs(k⋆)

(

ln
k

k⋆

)2

+ ... (70)

Observers typically fit the first two or three terms to their data and quote
constraints. Note that in addition to spectral indices we need an absolute nor-
malization ∆ζ(k⋆) at some wavenumber.

For gravitational waves, the tensor-to-scalar ratio r is defined by:

r ≡
4∆2

h(k)

∆2
ζ(k)

. (71)

(This r is consistent with WMAP convention and most papers but not with any
books.) One also defines a tensor spectral index nt:

nt ≡
d ln ∆2

h(k)

d ln k
. (72)

As an example, the recent parameters from WMAP (CMB) + BAO + SNe
are: (for k⋆ = 0.002 Mpc−1):

• ∆2
ζ(k⋆) = (2.46 ± 0.09)× 10−9.

• ns = 0.960+0.014
−0.013 (assuming no running, tensors); 0.968 ± 0.015 (with

tensors).

• αs = −0.032+0.021
−0.020 (no tensors).
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• r < 0.20 (95%CL, no running); < 0.54 (with running).

Since we haven’t seen the gravitational waves yet we can’t measure nt.
Relation to slow-roll parameters. From the calculated scalar power

spectrum, we can find the spectral index ns by differentiation:

ns = 1 +
d ln ∆2

ζ(k)

d ln k
= 1 −

d ln(GH2/πǫ)

dN
. (73)

But:
GH2

πǫ
∝

V 3

V ′2
, (74)

so the logarithmic derivative is:

ns = 1−
dφ

dN

(

3
d lnV

dφ
− 2

d lnV ′

dφ

)

= 1−
V ′

8πGV

(

3V ′

V
−

2V ′′

V ′

)

= 1−
3V ′2

8πGV 2
+

V ′′

4πGV
= 1−6ǫ+2η̄.

(75)
The tensor-to-scalar ratio is:

r =
4∆2

h

∆2
ζ

= 16ǫ. (76)

Thus ns and r map directly into the slow-roll parameters. If expressed as a
function of N , we may differentiate to get αs = −dns/dN .

Consistency relation. For single scalar field inflation, there is an elegant
relation between r and nt. If we recall that ∆2

h ∝ H2 ∝ V , then:

nt =
d lnV

d lnk
= −

d lnV

dN
= −

dφ

dN

V ′

V
= −

V ′

8πGV

V ′

V
= −2ǫ. (77)

Therefore:
nt = −

r

8
. (78)

This relation, if verified, would be a triumph, but foregrounds may turn out to
be too serious of a problem.

Predictions from specific models.

Massive scalar. We have ǫ = η̄ = 1/2N , so:

ns = 1 −
2

N
; αs = −

2

N2
; r =

8

N
. (79)

The mass of the scalar can always be adjusted to match ∆2
ζ(k⋆); this requires

m ∼ 2 × 1013 GeV. If this model is correct then since we expect N ∼ 60,
r ∼ 0.13, which means the tensors should be detectable in the next few years.

Quartic potential. We have ǫ = 1/N , η̄ = 3/2N , so:

ns = 1 −
3

N
; αs = −

3

N2
; r =

16

N
. (80)

This is ruled out by WMAP.
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Inverted quartic. Here we had (for φend = qV
1/2
0 /µ, where q ∼ 1):

η̄ = −
µ2

8πGV0
, ǫ = q2 |η̄|

2
e−2|η̄|N . (81)

Then:

ns = 1 −
(

2 + 3q2e−2|η̄|N
)

|η̄|; αs = −6q2|η̄|2e−2|η̄|N ; r = 8q2|η̄|e−2|η̄|N .

(82)
This is actually a two-parameter potential, and for any |η̄| one can choose V0

to give the right normalization. In these models, there is an upper limit r ≤
1.5q2/N ∼ 0.02, so seeing the tensors will be hard (or maybe impossible).

Hybrid inflation. Here we had:

η̄ =
m2

8πGV0
, ǫ = q2 η̄

2
e2η̄N , (83)

where the phase transition occurred at

φc =
qV

1/2
0

m
. (84)

In this case we have to have q ≪ 1 in order for our approximation m2φ2 ≪ V0

to be valid. In fact since φ ∝ eη̄N , if the observable scales left the horizon when
m2φ2 ≪ V0, then we need qeη̄N ≪ 1.

ns = 1 +
(

2 − 3q2e2η̄N
)

η̄; αs = 6q2η̄2e2η̄N ; r = 8q2η̄e−2η̄N . (85)

The tensors will only be detectable if qeη̄N is only a factor of a few less than 1.
There is no special reason for this to be the case, and indeed if you want the
scalar field φ ≪ MPl (as many supergravity theorists do) then r ≪ 1. Note that
another prediction of this limiting case is that ns > 1, which is either marginal
or ruled out by WMAP.

But be warned that one could have a model where qeη̄N ∼ 1, where when
CMB scales left the horizon m2φ2 ∼ V0. In this case one could have ns < 1 and
significant tensors, at the expense of fine tuning. Such models may also give
significant αs > 0, and may even switch from ns < 1 to ns > 1.
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