
1 Initial conditions

Now that we have the Einstein and Boltzmann equations, we need to find the
appropriate initial conditions. That is the purpose of this lecture. We will do
the vectors first, because they are the easiest; then the tensors; and finally the
scalars.

Vector perturbations. We need the initial values of the photon and neu-
trino perturbations {Θl}∞l=1 and {Nl}∞l=1, and the matter velocities vb and vc.
Let’s consider the photons first; their equations are:

Θ̇1 = − 1√
3
kΘ2 + τ̇

(

Θ1 −
i

3
vb

)

;

Θ̇2 = k

√
3Θ1 − 2

√
2Θ3

5
+

iB

5
√

3
+

9

10
τ̇Θ2;

Θ̇2 = k

√

(l − 1)(l + 1)Θl−1 −
√

l(l+ 2)Θl+1

2l + 1
+ τ̇Θl. (1)

At small η, τ̇ → −∞, so in order for the Θs to not blow up, the quantities
multiplying τ̇ must go to zero. This means:

Θ1 → i

3
vb; Θl → 0 (l ≥ 2). (2)

The photons are forced to have the same velocity as the baryons due to the high
opacity, and all higher moments (e.g. photon quadrupole) are wiped out.

At first glance it looks like one has more freedom in setting the initial con-
ditions for the neutrinos, since there are no τ̇s in their equations. However at
very early times (t < 1 second) the Universe is opaque to neutrinos, and so the
arguments above should also apply to the neutrinos:

N1 → i

3
vb; Nl → 0 (l ≥ 2). (3)

In order to proceed we need an initial condition for thhe baryon velocity.
The equation we derived in the last lecture is:

v̇b = −aHvb +
τ̇

R
(vb + 3iΘ1), (4)

where again R = 3ρ̄b/4ρ̄γ . We can add this to the equation for the photons:

3

R
iΘ̇1 = −

√
3

R
ikΘ2 +

τ̇

R
(vb + 3iΘ1) (5)

Subtracting these two equations gives:

v̇b −
3

R
iΘ̇1 = −aHvb −

√
3

R
ikΘ2. (6)
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At early times we found Θ2 → 0, and Θ1 → i
3vb. Substituting these in gives:

v̇b +
1

R
v̇b = −aHvb, (7)

which then implies:

v̇b = −aH R

R + 1
vb. (8)

Since R ∝ a, if one extrapolates backward to a = 0, vb approaches a constant.
The CDM equation is v̇c = −aHvc so vc ∝ a−1; a short time after the Big

Bang one should thus have vc ≈ 0.
It thus appears that we have one potentially nonzero initial vector mode,

that with vb 6= 0 and Θ1 = N1 = ivb/3. However we still have to put this into
the Einstein equation to see whether it works. We get:

B =
16πGa2

k2
(ρ̄bvb + ρ̄cvc − 4iρ̄γΘ1 − 4iρ̄νN1

→ 16πGa2

k2
(ρ̄γ + ν̄)

4

3
vb, (9)

where in the second line we have used the fact that ρ̄b � ρ̄γ . Using the Fried-
mann equations, we further find:

B → 8

(

aH

k

)2

vb. (10)

Now at early times, H ∝ a−2 so (aH/k)2 ∝ a−2. Therefore if vb did approach
a nonzero constant at early times the metric perturbations become very large.
The early Universe in this case looks very different from FRW and this is not a
well-behaved initial perturbation.

We technically need to show that the large metric perturbations are not
a gauge artifact and that they blow up in any gauge. We can show this by
replacing the left-hand side of Eq. (10) with the gauge-invariant combination:

Bi −
2i

k
Ėi3. (11)

If Bi is to remain small then Ėi3 must blow up.
Therefore there are no well-behaved primordial vector perturbations. They

are of interest if (i) vector perturbations are sourced by cosmic strings; or (ii)
in collapsing universe models where the ill-behaved modes are part of the initial
conditions and often prevent the universe from collapsing to an FRW singularity.

Tensor perturbations. The same arguments about τ̇ apply here and force
all photon and neutrino moments to zero at early times. This leaves one with:

Ë + 2aHĖ + k2E = 0. (12)

At early times, we have a ∝ η so aH = 1/η:

Ë +
2

η
Ė + k2E = 0. (13)
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If we take a trial solution of the form E ∝ ηc, then these terms are of order ηc−2,
ηc−2, and ηc respectively; so we may drop the last one. Equating coefficients of
c− 2 gives

c(c− 1) + 2c = 0, (14)

which has the solutions c = 0 and c = −1. The second solution is a decaying
mode, and the former solution (E =constant) is the only one that survives. At
late times (when kη ≥ 1) it switches to oscillating behavior, i.e. it becomes a
standing gravitational wave.

Scalar perturbations. The τ̇ arguments force

Θ1,N1 → i

3
vb; Θl,Nl → 0 (l ≥ 2) (15)

just as for the vectors. This immediately implies:

Ψ = −Φ. (16)

Since we take kη � 1, the k-terms in the Boltzmann hierarchy go away, and we
are left with

Θ̇0 = Ṅ0 = −Φ̇. (17)

Now consider the metric perturbations. The Einstein density equation gives

k2Φ + 3aH(Φ̇ − aHΨ) = 4πGa2δρ, (18)

we derive:
3aH(Φ̇ − aHΨ) = 16πGa2(ρ̄γΘ0 + ρ̄νN0). (19)

(Ignore k2 in comparison to aH∂η and keep only radiation terms on the right.)
But aH = 1/η in the radiation era, and the photon and neutrino densities are:

ρ̄γ =
3H2

8πG
(1 − fν); ρ̄ν =

3H2

8πG
fν . (20)

This results in a simplification to:

3

η

(

Φ̇ − Ψ

η

)

=
6

η2
[(1 − fν)Θ0 + fνN0]. (21)

Simplify:
ηΦ̇ − Ψ = 2[(1 − fν)Θ0 + fνN0]. (22)

Let’s take the (conformal) time derivative:

ηΦ̈ + Φ̇ − Ψ̇ = 2[(1 − fν)Θ̇0 + fνṄ0] = −2Φ̇. (23)

Using equality of potentials (Ψ = −Φ), we can write this as a differential equa-
tion for Φ:

ηΦ̈ + 4Φ̇ = 0. (24)
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We can try a power law solution for Φ since this is a dimensionally homogeneous
equation, the solutions are Φ =constant and Φ ∼ η−3. The latter solution is
decaying so only the Φ =constant piece is a viable initial condition.

It follows that Θ0 and N0 go to a constant as well. From Eq. (22) we then
derive:

Φ = 2[(1 − fν)Θ0 + fνN0]. (25)

But at some early epoch the neutrinos thermalized with the photons (the possi-
ble exception is a large lepton asymmetry). In this case N0 = Θ0 at early times,
and Φ = 2Θ0.

We will also need the initial conditions for the matter densities and velocities.
For the dark matter the velocity equation is:

v̇c = −aHvc − ikΨ = −aHvc + ikΦ. (26)

We can simplify this by writing:

∂

∂η
(avc) = ȧvc + av̇c = a(aHvc + v̇c) = ikaΦ. (27)

But avc → 0 as a→ 0 for a well-behaved velocity, thus:

vc =
1

a

∫

ikaΦ dη =
ikηΦ

2
, (28)

since a ∝ η. Writing in terms of η = 1/(aH) we find:

vc =
ikΦ

2aH
. (29)

For the baryons the situation is more complicated because of the scattering
with photons. The baryon and photon equations are:

v̇b = −aHvb +
τ̇

R
(vb + 3iΘ1) − ikΨ,

Θ̇1 = k
Θ0 − 2Θ2

3
+ τ̇

(

Θ1 −
1

3
ivb

)

+
1

3
kΨ. (30)

We can take the linear combination of these that eliminates τ̇ :

v̇b −
3

R
iΘ̇1 = −aHvb − ikΨ − 3

R
ik

Θ0 − 2Θ2

3
− 1

R
ikΨ. (31)

Eliminating Θ2 = 0, and substituting Θ1 = ivb/3 on the left side, we simplify
this to:

(

1 +
1

R

)

v̇b = −aHvb +

(

1 +
1

R

)

ikΦ − 1

R
ikΘ0. (32)

As R → 0:

v̇b = ik(Φ − Θ0) = ikΘ0 =
ikΦ

2
. (33)

4



This integrates to give:

vb = vb0 +
ikΦ

2aH
. (34)

It looks at this point like one can have any initial velocity one wants, but
just as in the situation with the vectors the Einstein equations come in here
and restrict the reasonable initial conditions. Recall the momentum Einstein
equation,

Φ̇ − aHΨ = 4πGa2 j

ik
. (35)

At early times the left-hand side goes to Φ/η, and the momentum density goes
to

j → −4iρ̄rΘ1 =
4

3
ρ̄rvb. (36)

Therefore:
Φ

η
=

16πGa2

3
ρ̄r
vb
ik

=
2

η2

vb
ik
. (37)

As η → 0, this forces vb → 0. Thus for well-behaved initial conditions we need
vb → 0.

It is easily seen from the density evolution equations that δb and δc can start
out with any value.

To summarize: the initial conditions for a scalar mode are controlled by the
values of Θ0, δb, and δc. Given these, one has Φ = −Ψ = 2Θ0, and

Θ1 = N1 =
ivb
3

=
ivc
3

= − kΦ

6aH
. (38)

Adiabatic vs. isocurvature perturbations. We have seen that there are
three allowed types of initial scalar perturbations, and we need a classification
for them. We first note that in general, an observer even at early times (when the
perturbation is outside the horizon, kη � 1) sees something different depending
on whether he is in a “crest” or a “trough” of a perturbation. For example,
the number density of photons is proportional to T 3

γ ∝ 1 + 3Θ0. Therefore
the photon-to-baryon ratio, which is constant with time for a given observer, is
modulated by 3Θ0 − δb. So if 3Θ0 − δb 6= 0, then even at early times observers
in different regions see different phenomenology.

These comparisons become impossible in models in which all observers agree
on the basic quantities like the photon:baryon ratio, i.e. if

Θ0 : δb : δc = 3 : 1 : 1. (39)

Such an initial perturbation is called adiabatic.
On the other hand, one could have a perturbation where the initial metric

perturbation Φ = 2Θ0 vanishes, but the particle content (baryons + CDM) is
different. Such perturbations exhibit interesting late-time dynamics when the
baryons and CDM start to dominate the energy budget of the Universe and
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hence source metric perturbations. If we modify the baryons, we get a baryon

isocurvature perturbation:

Θ0 : δb : δc = 0 : 1 : 0. (40)

We could also have a dark matter isocurvature perturbation:

Θ0 : δb : δc = 0 : 0 : 1. (41)

A general perturbation is a linear combination of these.
In models with a lepton asymmetry and conserved lepton number, one could

have N0 6= Θ0. This allows for the possibility of a fourth type of perturbation,
the neutrino isocurvature perturbation:

Θ0 : N0 : δb : δc = −fν : 1 − fν : 0 : 0, (42)

in which also initially Φ = 0.
If one has additional fields in the universe (multicomponent dark matter,

dynamical dark energy) then of course additional isocurvature perturbations
become possible.

Observationally, the adiabatic perturbations explain everything we have seen
so far, so we focus on those; but it must be remembered that a small contribution
of isocurvature modes is possible.

2 Inflation

At this point, we have a problem: we need a mechanism to generate the pertur-
bations. We have an even more serious problem too, the horizon problem: since
the patches of CMB sky that we observe today were separated by more than a
horizon length at the time of recombination (i.e. their comoving separation is
large compared to ηrec), it is not clear why they should be at nearly the same
temperature at all.

A nontrivial amount of this section is based on Liddle & Lyth.
Solving the horizon problem. The simplest way to solve this problem is

inflation. We propose that the expansion history H ∝ a−2 did not occur all the
way to a singularity at a = 0, T = ∞, and H = ∞. Rather we wish to modify
the early expansion history of the Universe to solve the horizon problem. Recall
that the conformal time is:

η =

∫

dt

a
=

∫

d ln a

aH
=

∫

da

a2H
. (43)

The horizon problem occurred because this integral is convergent as a → 0. In
general suppose that as a → 0 the Universe consisted of some substance with
equation of state w. Then we found earlier that:

H ∝ a−3(1+w)/2. (44)
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The integration for η then becomes:

η ∝
∫

a(3w−1)/2 da. (45)

The integral converges as a → 0 for w > −1/3 (e.g. for matter or radiation)
and diverges for w ≤ −1/3. Recall from the Friedmann equation that:

ä

a
= −4

3
πGρ(1 + 3w). (46)

Therefore the “stuff” we need with w ≤ −1/3 must have sufficiently negative
pressure to make the early Universe accelerate – hence the name “inflation.” An
easy choice would be the cosmological constant Λ with w = −1, but we know
that Λ is too small. Nevertheless, we can make significant progress by assuming
that the Universe went through a phase in which w ≈ −1. Later we will discuss
possible microphysics that leads to this situation.

If indeed inflation took place with w ≈ −1, there was an energy density ρinf
during inflation and a Hubble constant,

Hinf =

√

8

3
πGρinf . (47)

The conformal time during inflation was

η =

∫

da

a2Hinf
= − 1

aHinf
+ constant. (48)

We need to find the constant of integration now. The simplest possible as-
sumption is that the end of inflation corresponds to the beginning of the hot,
radiation-dominated expansion phase. (To go from inflation to the hot phase
requires a process known as reheating during which the energy density from in-
flation thermalizes; the conformal time that elapsed during this phase is usually
very small.) This corresponds to η ≈ 0 for our usual choice of conformal time.

If inflation ends at scale factor ae, then we can solve for the integration
constant:

η =

∫

da

a2Hinf
= − 1

aHinf
+

1

aeHinf
. (49)

It is convenient to define a new variable N , the number of e-folds of expansion
remaining until the end of inflation:

N = ln
ae
a

↔ a = aee
−N . (50)

In terms of this variable, we have:

η = − 1

aeHinf
(eN − 1). (51)
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The initial conditions we defined earlier for perturbation theory were defined
at the surface η = 0. Two portions of this surface separated by distance r were
last in causal contact at η = −r. Written in terms of the number of e-folds:

N = ln(−aeHinfη − 1) ≈ ln(aeHinfr). (52)

We discuss perturbation modes in Fourier space, so alternatively we can write:

N ≈ ln
aeHinf

k
. (53)

Unfortunately we don’t know enough physics to compute N exactly because
we don’t know ae or Hinf . On the other hand, these two quantities appear
in a logarithm so some rough estimation is possible. Suppose first that the
Universe reheats instantaneously (which is probably wrong). Then the density
at reheating is, at order of magnitude level (leaving out factors of g?),

ρ ∼ T 4 ∼ T 4
0 a

−4
e , (54)

where T0 = 2.7 K is the temperature today. By conservation of energy this

equals the energy density during inflation ρinf , so ae ∼ T0ρ
−1/4
inf . The Hubble

constant during inflation is

Hinf ∼ (Gρinf )
1/2. (55)

Then:
aeHinf ∼ G1/2T0ρ

1/4
inf . (56)

Substituting into Eq. (53) gives:

N ≈ ln
G1/2ρ

1/4
infT0

k
. (57)

To plug in some typical numbers:

N ≈ ln
G1/2ρ

1/4
infT0

k
= 56 + ln

ρ
1/4
inf

1016 GeV
− ln

k

1 Mpc−1 . (58)

This argument could be modified if the Universe went through a non-radiation
dominated phase (w 6= 1/3) after the end of inflation. An example would be
if inflation left behind a nonrelativistic matter field (e.g. coherently oscillat-
ing inflaton field) that lived for several e-folds of inflation before decaying into
radiation and thermalizing.

The largest scales we observe today in the CMB are of order k =few×10−4

Mpc, which correspond to

N ∼ 64 + ln
ρ
1/4
inf

1016 GeV
. (59)
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In order for inflation to solve the horizon problem this means it had to have
lasted at least ∼ 64 e-folds – or maybe somewhat less if the energy density
during inflation was low.

Scalar fields. Most models of inflation make use of a scalar field. The
action for a minimally coupled scalar field is:

S =

∫

d4x
√−g

[

−1

2
gµνφ;µφ;ν − V (φ)

]

, (60)

where V (φ) is a function called the potential. We can derive the equations of
motion for the scalar by taking the functional derivative:

0 =
δS

δφ
=

√−g [∇µ∇µφ− V ′(φ)] , (61)

so the equation of motion is:

∇µ∇µφ− V ′(φ) = 0. (62)

In the case of a homogeneous scalar field in an FRW metric, this simplifies to:

φ̈+ 2aHφ̇+ a2V ′(φ) = 0; (63)

or, in terms of physical time t,

d2φ

dt2
+ 3H

dφ

dt
+ V ′(φ) = 0. (64)

The equation of state can be obtained from the stress-energy tensor of the
scalar field. This is:

Tµν = −2
δS

δgµν
= φ;µφ;ν − gµν

[

1

2
φ;αφ

;α + V (φ)

]

. (65)

In the case of the homogeneous scalar field, this gives:

ρ =
1

2
a−2φ̇2 + V (φ);

p =
1

2
a−2φ̇2 − V (φ). (66)

The equation of state is:

w =
1
2a

−2φ̇2 − V (φ)
1
2a

−2φ̇2 + V (φ)
. (67)

This is the basic reason that scalar fields are useful for inflation: if the
potential V dominates over the “kinetic” energy term φ̇2/2a2, then w → −1.
Then the scalar field can act like a cosmological constant and make the Universe
acclerate. But eventually the scalar field can “roll down” to another value of φ
where V ≈ 0, and inflation can stop.
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Slow-roll conditions. The evolution equation for φ (Eq. 64) looks like
the equation for a particle moving in a potential with a drag term. Under
certain conditions the drag term can dominate over the “inertia” term d2φ/dt2,
a phenomenon known as slow roll. To see when this may happen, we define the
slow-roll parameters:

ε(φ) =
V ′2

16πGV 2
; η̄(φ) =

V ′′

8πGV
. (68)

If slow roll holds and the kinetic energy density is negligible, then

dφ

dt
= −V

′(φ)

3H
= − 1√

24πG
fracV ′(φ)

√

V (φ). (69)

The implied acceleration is obtained by dotting this:

d2φ/dt2

dφ/dt
=

d

dt

(

ln
dφ

dt

)

=
V ′′(φ)dφ/dt

V ′(φ)
− V ′(φ)dφ/dt

2V (φ)
. (70)

Simplify the second term:

d2φ/dt2

dφ/dt
= −aV

′′(φ)

3H
+

[V ′(φ)]2

6HV (φ)
. (71)

The ratio of the accleration to the drag is:

d2φ/dt2

3H dφ/dt
= −aV

′′(φ)

9H2
+

[V ′(φ)]2

18H2V (φ)
. (72)

Using the Friedmann equation, H2 = (8/3)πGV ,

d2φ/dt2

3H dφ/dt
= − aV ′′

24πGV
+

V ′2

48πGV 2
. (73)

Thus the second-derivative term can be neglected if ε and |η̄| are both � 1. We
must also require that kinetic energy density is negligible:

kinetic

potential
=

(dφ/dt)2

2V
=

V ′2

48πGV 2
=

1

3
ε. (74)

Thus if ε, |η̄| � 1 there is a self-consistent slow-roll solution to the equations.
The equation of state during the inflationary epoch is

w =
(dφ/dt)2/2 − V

(dφ/dt)2/2 + V
=
ε/3 − 1

ε/3 + 1
= −1 +

2

3
ε. (75)

Thus the slow-roll solution does indeed give us almost-exponential expansion.
The number of e-folds of inflation can be obtained by integrating over the

field value (I will take φ to move from + to −):

N = −
∫

dφ

dφ/dN
= −

∫

H
dφ

dφ/dt
=

∫

HdφV ′/3H =

∫

3H2

V ′
dφ =

∫

8πGV

V ′
dφ.

(76)
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The integration constant should be set to N = 0 at the end of inflation. This is
typically when ε becomes large; according to slow-roll, w = −1/3 occurs when
ε = 1, but one should not take this too seriously as slow-roll breaks down at
this point.

3 Examples

We now consider some toy models of inflation. These are just the simplest
possibilities one can write down; it’s possible that inflation was much more
complicated (or even that there was an alternative!). But they illustrate the
major features that are possible with a single field.

Single massive scalar. The simplest potential one can write down is:

V (φ) =
1

2
m2φ2. (77)

The slow-roll parameters are:

ε(φ) =
1

4πGφ2
; η̄(φ) =

1

4πGφ2
. (78)

The number of e-folds remaining until the end of inflation is:

N =

∫

4πGm2φ2

m2φ
dφ = 2πGφ2, (79)

assuming inflation ends when φ → 0. (Technically it ends when φ ∼ 1/
√

4πG
but for N � 1 this doesn’t matter.) Since N relates more directly to observables
than φ, it is worth writing the slow-roll parameters in terms of N :

ε = η̄ =
1

2N
. (80)

Quartic potential. Another theory, beloved by all QFT students, is:

V (φ) =
1

24
λφ4. (81)

Now the slow-roll parameters are

ε(φ) =
1

πGφ2
; η̄(φ) =

3

2πGφ2
. (82)

The number of e-folds remaining until the end of inflation is: (recall V/V ′ =
4/φ)

N =

∫

2πGφdφ = πGφ2, (83)

and thus:

ε =
1

N
η̄ =

3

2N
. (84)
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Inverted quadratic. Here we try a potential motivated by spontaneous
symmetry breaking problems:

V (φ) = V0 −
1

2
µ2φ2. (85)

The field starts near φ = 0 and rolls toward large φ. This potential requires
additional terms to come in later (e.g. a λφ4 term) to stop inflation.

The slow-roll parameters are:

ε(φ) =
µ4φ2

16πGV 2
0

; η̄(φ) = − µ2

8πGV0
. (86)

(Yes, η̄ can be negative!) Slow-roll breaks when the scalar field gets too large
and the higher-order terms stop it; this is presumably at:

φend ∼ V
1/2
0

µ
, (87)

although it could happen before then. The number of e-folds is then:

N = −
∫

8πGV0

µ2φ
dφ =

8πGV0

µ2
ln
φend

φ
. (88)

Inverting to get φ:

φ = φend exp
−µ2N

8πGV0
(89)

and hence

ε =
µ4φ2

end

16πGV 2
0

exp
−µ2N

4πGV0
∼ µ2

16πGV0
exp

−µ2N

4πGV0
. (90)

This depends on the unknown parameter µ2/16πGV0, but if N ∼ 60 then we
will need ε to be � 1, and possible �� 1.

Hybrid inflation. This is actually a two-field model of inflation, e.g.:

V = V0 +
1

2
m2φ2 − 1

2
m2
ψψ

2 +
1

4
λψ4 +

1

2
λ′ψ2φ2. (91)

For large φ, the field ψ sits at its minimum ψ = 0. But φ slides down its
potential, and at some critical value

φc =

√

λ

λ′
M, (92)

there is a phase transition, the ψ → −ψ symmetry is spontaneously broken.
The two fields then roll together until inflation is terminated.

If the V0 term dominates the potential, then the slow-roll parameters are:

ε(φ) =
m4φ2

16πGV 2
0

; η̄(φ) =
m2

8πGV0
. (93)
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The number of e-folds of inflation is:

N =

∫ φ

φc

8πGV0

m2φ
dφ =

8πGV0

m2
ln

φ

φc
. (94)

The ε parameter can be written in terms of N :

ε =
m4φ2

c

16πGV 2
0

exp
m2N

4πGV0
. (95)

Note that in this model, ε could be very small if we take φc to be small. Our
freedom to do this will be restricted by the requirement to get the right pertur-
bation spectrum, but we have three knobs to play with (φc, m, V0) so a large
class of hybrid models is viable.
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