
1 Objectives

In this lecture we will take the photon multipole equations derived last time, and
convert them into Fourier-multipole space. This will be convenient for linear
perturbation theory, since each Fourier mode evolves independently, and for the
CMB, since the superposition of CMB fluctuations is simpler in multipole than
in angle space.

2 Fourier transform

We wrote down the Boltzmann equation for photons last time; it is:

Θ̇ = −p̂i ∂Θ

∂xi
− p̂i ∂A

∂xi
− p̂ip̂j ∂Bi

∂xj
− Ḋ − p̂ip̂jĖij

−aneσT (Θ − vb · p̂) +
3

16π
aneσT

∫

[1 + (p̂ · p̂′)2]Θ(p̂′i)d2p̂′i. (1)

We will now take the Fourier transform of all the perturbation variables. For
example,

Θ(k, p̂, η) =

∫

R3

Θ(xi, p̂, η)e−ikix
i

d3xi. (2)

The advantage of this approach is that the partial derivative operator ∂/∂xi

simply becomes multiplication: iki. We can therefore transform Eq. (1) into:

Θ̇ = −ikip̂
iΘ − ikip̂

iA − ikj p̂
ip̂jBi − Ḋ − p̂ip̂jĖij

+τ̇(Θ − vb · p̂) − 3

16π
τ̇

∫

[1 + (p̂ · p̂′)2]Θ(p̂′i)d2p̂′i. (3)

(Definition: τ̇ = −aneσT is the optical depth per unit conformal time – this
is negative so that we will later be able to define τ as the optical depth from
the observer to a particular redshift.) In this equation, Θ, A, Bi, D, Eij , and
vb have been Fourier-transformed. General rule: perturbation variables are
Fourier-transformed; backgrounds (e.g. ne) or independent variables (e.g. p̂i)
are not. Note that there are no terms that couple different Fourier modes, as
appropriate for a homogeneous background.

3 Multipole decomposition

A further simplification is possible if we decompose the perturbations in multi-
poles. We begin by switching to a coordinate system in whick k points along the
3-axis. (Superposing different Fourier modes will be necessary to get e.g. the
CMB power spectrum, and will involve some bookkeeping and rotation matrices,
but no new physics.) So we can simply write kê3 in place of k.

In this coordinate system, one can write p̂ in spherical coordinates:

p̂ = (sin θ cosφ, sin θ sinφ, cos θ), (4)
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with µ = cos θ = p̂ · k̂. We will then do a multipole decomposition:

Θ(k, θ, φ, η) =
∑

lm

(−i)l
√

4π(2l + 1)Θlm(k, η)Ylm(θ, φ), (5)

which has inverse:

Θlm(k, η) =
il

√

4π(2l + 1)

∫

Y ∗
lm(θ, φ)Θ(k, θ, φ, η) sin θ dθ dφ. (6)

In the special case of m = 0 we may write this in terms of the Legendre poly-
nomials:

Θl0(k, η) =
il

4π

∫

Pl(µ)Θ(k, θ, φ, η)dµ dφ. (7)

The advantage of the multipole decomposition is that it dramatically sim-
plifies Eq. (3). Taking the time derivative of Eq. (6), we get:

Θ̇lm(k, η) =
il

√

4π(2l + 1)

∫

Y ∗
lm(θ, φ)Θ̇(k, θ, φ, η) sin θ dθ dφ. (8)

Therefore if we evaluate each term in the Boltzmann equation, and substitute
into Eq. (8), we can get the multipole-space Boltzmann equation. This is our
next goal.

Free-streaming term. First let’s consider the free-streaming term, −ikip̂
iΘ.

We can simplify kip̂
i = kµ. So the contribution to Θ̇lm from this term is, from

Eq. (8):

Θ̇lm|fs =
il

√

4π(2l + 1)

∫

Y ∗
lm(θ, φ)(−ikµ)Θ(θ, φ) sin θ dθ dφ

= −ikµ
il

√

4π(2l + 1)

∫

Y ∗
lm(θ, φ)

∑

l′m′

(−i)l′
√

4π(2l′ + 1)Θl′m′Yl′m′(θ, φ) sin θ dθ dφ

= −ikµ
∑

l′m′

il−l′
√

2l′ + 1

2l + 1
Θl′m′

∫

Y ∗
lm(θ, φ)µYl′m′(θ, φ) sin θ dθ dφ. (9)

We’ve simplified the problem down to an integral over spherical harmonics. This
integral comes with a simple selection rule, namely that by azimuthal symmetry
in φ it is only nonzero if m′ = m. It is also straightforward to see that under
the symmetry θ → π − θ (mu → −µ) we must have l − l′ odd. Finally, µ
is a spherical harmonic of order 1, so the triangle rule for addition of angular
momenta implies l − l′ = −1, 0, +1 (and we just learned that 0 is ruled out).
So all of this boils down to the two cases of l′ = l − 1, m′ = m and l′ = l + 1,
m′ = m. The relevant integral is (recall dipole radiation from atomic physics!):

∫

Y ∗
lm(θ, φ)µYl−1,m(θ, φ) sin θ dθ dφ =

√

(l + m)(l − m)

(2l + 1)(2l − 1)
. (10)
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By swapping l and l − 1 we may obtain the other integral,

∫

Y ∗
lm(θ, φ)µYl+1,m(θ, φ) sin θ dθ dφ =

√

(l + 1 + m)(l + 1 − m)

(2l + 3)(2l + 1)
. (11)

Putting it all together:

Θ̇lm|fs = k

[

√

(l + m)(l − m)

2l + 1
Θl−1,m −

√

(l + 1 + m)(l + 1 − m)

2l + 1
Θl+1,m

]

.

(12)
Gravitational sources. We next consider the terms in the Boltzmann

equation from the metric perturbations A, B, D, and E. Take A as an example:

Θ̇lm|A =
il

√

4π(2l + 1)

∫

Y ∗
lm(θ, φ)(−ikµA) sin θ dθ dφ. (13)

But we can factor out −ikA and decompose µ as a spherical harmonic,

µ = cos θ =

√

4π

3
Y10(θ, φ), (14)

so that orthonormality implies:

Θ̇lm|A =
1

3
kAδl1δm0. (15)

Thus the A metric perturbation only sources a photon dipole, and even then
only the m = 0 component.

The same exercise can be repeated for the other gravitational source terms
B, D, and E. The overall result is:

Θ̇00|grav = −1

3
ikB3 − Ḋ;

Θ̇10|grav =
1

3
kA;

Θ̇1,±1|grav = 0;

Θ̇20|grav =
2

15
ikB3 +

1

5
Ė33;

Θ̇2,±1|grav = − 1

5
√

6
ik(±B1 − iB2) −

1

5
√

6
(±Ė13 − iĖ23);

Θ̇2,±2|grav =
1

5
√

6
(Ė11 − Ė22 ∓ 2iĖ12);

Θ̇lm,l≥3|grav = 0. (16)

The fact that there are only local sources for l ≤ 2 is a direct consequnce of
gravity being a spin-2 field.
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Scattering terms. The scattering term has three parts. The first (S1) is
the τ̇Θ term, which trivially tansforms into multipole space as:

Θ̇lm|S1 = τ̇Θlm. (17)

The second (S2) is the baryon velocity term −τ̇vb · p̂, which can be transformed
the same way we handled the gravitational sources:

Θ̇10|S2 = −1

3
iτ̇vb3;

Θ̇1,±1|S2 = − 1

3
√

2
iτ̇ (∓vb1 + ivb2). (18)

(All others vanish since velocity is a dipole.)
The third term (S3) is:

Θ̇lm|S3 = − il
√

4π(2l + 1)

∫ ∫

Y ∗
lm(p̂)

3

16π
τ̇ [1 + (p̂ · p̂′)2]Θ(p̂′)d2p̂′d2p̂. (19)

Its evaluation involves expanding the dot product, and separating out the p̂

integral. This will be a homework exercise, but the answer is:

Θ̇00|S3 = −τ̇Θ00;

Θ̇2m|S3 = − 1

10
τ̇Θ2m, (20)

with all others vanishing.
Scalars, vectors, and tensors. Note that the different values of m don’t

talk to each other; this is a consequence of rotational invariance around the k

axis. So we can consider each case independently. We’ll focus on the m = 0
modes, i.e. perturbations that are invariant under rotations around the k axis.
These are called scalar modes in cosmology, which distinguishes them from
vector modes (m = ±1) and tensor modes (m = ±2). The scalars are the only
primordial modes that have been detected; we’ll discuss tensors later but not
vectors (in standard cosmology they have no source).

The scalar modes. If we put all of this together, we get for the m = 0:

Θ̇00 = −kΘ10 −
1

3
ikB3 − Ḋ;

Θ̇10 = k
Θ00 − 2Θ20

3
+ τ̇Θ10 −

1

3
iτ̇ vb3 +

1

3
kA;

Θ̇20 = k
2Θ10 − 3Θ30

5
+

9

10
τ̇Θ20 +

2

15
ikB3 +

1

5
Ė33;

Θ̇l0 = k

[

l

2l + 1
Θl−1,0 −

l + 1

2l + 1
Θl+1,0

]

+ τ̇Θl0 (l ≥ 3). (21)

The usual computation occurs in the Newtonian gauge (A = Ψ, D = Φ, B =
E = 0) in which case, dropping the 0 subscripts:

Θ̇0 = −kΘ1 − Ψ̇;

4



Θ̇1 = k
Θ0 − 2Θ2

3
+ τ̇Θ1 −

1

3
iτ̇vb3 +

1

3
kΨ;

Θ̇2 = k
2Θ1 − 3Θ3

5
+

9

10
τ̇Θ2;

Θ̇l = k

[

l

2l + 1
Θl−1 −

l + 1

2l + 1
Θl+1

]

+ τ̇Θl (l ≥ 3). (22)

The sequence of multipole moments is called the Boltzmann hierarchy.
The vector modes. One can write a similar hierarchy for the vector modes,

m = ±1. In this case there is no monopole (l = 0). One finds:

Θ̇1 = − 1√
3
kΘ2 + τ̇Θ1 −

iτ̇

3
√

2
(∓vb1 + ivb2);

Θ̇2 = k

√
3Θ1 − 2

√
2Θ3

5
− ±i(B1 − iĖ13) + (B2 − iĖ23)

5
√

6
+

9

10
τ̇Θ2;

Θ̇l = k

[

√

(l − 1)(l + 1)

2l + 1
Θl−1 −

√

l(l + 2)

2l + 1
Θl+1

]

+ τ̇Θl (l ≥ 3). (23)

Inflation does not generate vector perturbations, and they are decaying anyway
(as we’ll see later – it requires us to understand baryon velocity). So we won’t
do much with them. In exotic scenarios (cosmic strings) one can have vectors.

The tensor modes. Finally we consider the tensor modes, m = ±2. These
have no monopole or dipole. They cannot be generated in linear perturbation
theory by density fluctuations, but one can make them during inflation. (Pri-
mordial gravitational waves!) The equations are:

Θ̇2 = − 1√
5
kΘ3 +

9

10
τ̇Θ2 +

1

5
√

6
(Ė11 − Ė22 ∓ 2iĖ12);

Θ̇l = k

[

√

(l − 2)(l + 2)

2l + 1
Θl−1 −

√

(l − 1)(l + 3)

2l + 1
Θl+1

]

+ τ̇Θl (l ≥ 3).(24)

4 Neutrino equations

Neutrinos are just like photons with two exceptions: (i) they are fermions, and
(ii) they don’t have Thomson scattering. (Actually they have mass but that
doesn’t concern us yet.)

For a fermion that was initially in a Fermi-Dirac distribution with zero chem-
ical potential, the unperturbed phase space density is:

f (0)(xi, p, p̂i; η) =
1

ep/Tν + 1
. (25)

In analogy to the photons, we can define a neutrino temperature perturbation
N :

f(xi, p, p̂i; η) =

{

exp
p

Tν(η)[1 + N (xi, p, p̂i; η)]
+ 1

}−1

. (26)
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If we had detectors that could see milli-eV neutrinos then we could make maps
of N just as the CMB observers make maps of Θ.

One can go through the machinery of Fourier-transformingN and then doing
a multipole decomposition. It works the same way as for photons, except that
it is simpler (no scattering term). We get, for the scalars in Newtonian gauge:

Ṅ0 = −kN1 − Ψ̇;

Ṅ1 = k
N0 − 2N2

3
+

1

3
kΨ;

Ṅl = k

[

l

2l + 1
Nl−1 −

l + 1

2l + 1
Nl+1

]

(l ≥ 2), (27)

etc.

5 Dark matter

Next we come to the dark matter. Usually in cosmology we will assume that it
is cold dark matter (CDM), which means that initially the dark matter particles
all move at the same velocity. Late in the history of the Universe when galaxies
form, one may have CDM particles whose orbits cross and hence at a given point
there may be a velocity dispersion, but this is not part of linear perturbation
theory.

There was at one time a theory of hot dark matter (HDM) where initially the
dark matter particles were moving rapidly (“rapidly” = can move a perturbation
wavelength in less than the age of the universe). We could do this but it’s very
complicated.

So here we go with CDM: the dark matter at each point is described by a
density ρc and a velocity vc (subscript c is for CDM). We can determine their
equations of motion from the continuity equation,

∇µT µν = 0. (28)

So all we need to do is write T µν in terms of ρc and vc, and we’re done.
The stress-energy tensor in the normal observer’s frame, is:

T 0̂0̂ = ρc; T 0̂î = ρcv
i
c; T îĵ = 0. (29)

We can convert this into a contravariant tensor by:

T µν = T 0̂0̂uµuν + T 0̂̂i[uµ(eî)
ν + uν(eî)

µ] + T îĵ(eî)
µ(eĵ)

ν . (30)

Recall that uµ = a−1(1 − A, Bi); then:

T 00 =
ρc

a2
(1 − 2A);

T 0i =
ρc

a2
(Bi + vi

c);

T ij = 0. (31)
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Going back to the continuity equation, we can write the ν = 0 component:

Ṫ 00 + ∂iT
0i + Γµ

µ0T
00 + Γµ

µiT
0i + Γ0

00T
00 + 2Γ0

0iT
0i + 2Γ0

ijT
ij = 0. (32)

In first order perturbation theory, T ij = 0 so we drop the last term. Also T 0i,
Γ0

0i, and Γµ
µi are all first order, so their products are second-order and can be

dropped:
Ṫ 00 + ∂iT

0i + (Γµ
µ0 + Γ0

00)T
00 = 0. (33)

We can now use the Christoffel symbols:

Γµ
µ0 = ∂0 ln

√

|g| = 4aH + Ȧ + 3Ḋ; Γ0
00 = aH + Ȧ. (34)

Then we have:

ρc

a2

{

−2Ȧ + [
ρ̇c

ρc
− 2aH ](1 − 2A) + ∂i(Bi + vi

c) + (5aH + 2Ȧ + 3Ḋ)(1 − 2A)

}

= 0.

(35)
Simplifying:

(1 − 2A)
ρ̇c

ρc
+ ∂i(Bi + vi

c) + 3aH(1 − 2A) + 3Ḋ = 0. (36)

Divide by 1 − 2A and solve for ρ̇c:

ρ̇c

ρc
= −3(aH + Ḋ) − ∂i(Bi + vi

c). (37)

Note that in the unperturbed case, this is −3aH , in accordance with the usual
scaling ρc ∝ a−3.

It is conventional to define the fractional density perturbation,

δc =
ρc

ρ
(0)
c

− 1. (38)

Its derivative is, to first order,

δ̇c = ∂η

(

ln
δc

δ
(0)
c

)

= ∂η ln δc − ∂η ln δ(0)
c . (39)

The second term is −3aH , so we get:

δ̇c = −3Ḋ − ∂i(Bi + vi
c). (40)

Now we need to get an equation for the dark matter velocity. This comes
from momentum conservation, i.e. the ν = i components of ∇µT µν = 0:

Ṫ 0i + ∂jT
ij + Γµ

µ0T
0i + Γµ

µjT
ji + Γi

00T
00 + 2Γi

0jT
0j + Γi

jkT jk = 0. (41)

Again, the purely spacelike components of T vanish at first order, so we have:

Ṫ 0i + Γµ
µ0T

0i + Γi
00T

00 + 2Γi
0jT

0j = 0. (42)
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Now T 0j is a first-order quantity, so we only need Γµ
µ0 and Γi

0j to zeroeth order:

Γµ
µ0 = 4aH ; Γi

0j = aHδi
j . (43)

The other Christoffel symbol we need to first order:

Γi
00 = A,i − Ḃi − aHBi. (44)

With this we find:

ρc

a2

{(

−2aH +
ρ̇c

ρc

)

(Bi + vi
c) + Ḃi + v̇i

c + 4aH(Bi + vi
c) + A,i − Ḃi − aHBi + 2aH(Bi + vi

c)

}

= 0.

(45)
Now ρ̇c/ρc multiplies a perturbation so we can substitute the unperturbed value
−3aH . This simplifies our equation to:

aHvi
c + v̇i

c + A,i = 0, (46)

or:
v̇i

c = −aHvi
c − A,i. (47)

Fourier decomposition. If we take the Fourier transform of the density
and velocity equations, we get:

δ̇c = −3Ḋ − ik(B3 + v3
c );

v̇3
c = −aHv3

c − ikA;

v̇i
c = −aHvi

c (i = 1, 2). (48)

In the case of the photons and neutrinos, we decomposed the perturbations into
scalars (invariant under rotations around the 3 axis) and vectors (which pick up
a factor of e±i∆φ under such rotations). In this case δc and v3

c are scalars. The
vectors are:

v(±1)
c =

∓v1
c + iv2

c√
2

. (49)

The numbers v
(+1)
c , v3

c , and v
(−1)
c describe the 3 components of velocity. The

equations of motion for the vectors are:

v̇(±1)
c = −aHv(±1)

c , (50)

which have solution v
(±1)
c ∝ a−1. This means that the vector perturbations in

the CDM are purely decaying and (aside from nonlinear effects) are not expected
today.

In the Newtonian gauge, the scalar equations are:

δ̇c = −3Φ̇ − ikvc;

v̇c = −aHvc − ikΨ. (51)

8



6 Baryons

Cold baryons. Finally we come to the baryonic matter. We will treat the
baryons can be treated as pressureless (“cold”) just like the dark matter. The
condition under which this is justified is that a pressure (sound) wave not be
able to propagate a perturbation wavelength in a Hubble time, i.e.

cs

aH
� k−1. (52)

We must evaluate the left hand side in order to establish the range of scales over
which the baryons may be treated as cold. At recombination (z = 1100), the
temperature of the baryons is 3000 K, implying a sound speed of 2× 10−5, and

cs

aH
≈ 0.003h Mpc−1. (53)

The perturbations that we see in the microwave background have wavenum-
bers k < 0.05h Mpc−1. In the case of galaxy clustering, we may use wavenum-
bers as high as 0.3 Mpc−1. Thus we see that for the purposes of the CMB, or
for setting up the initial conditions for galaxy clustering calculations, we may
treat the baryons as cold. (Of course baryon pressure has a large influence on
the process of galaxy formation itself.)

The equations. For cold baryons, the perturbation variables are δb and
vb, exactly analogous to the CDM variables. The difference is that baryons are
acted on by an external force: radiation pressure. The law of conservation of
energy-momentum for baryons is then:

∇µT µν = F ν , (54)

where F ν is the 4-momentum per unit 4-volume delivered to the baryons. This
is a 4-vector, and it can be decomposed into F 0̂ (the power delivered by the

radiation per unit volume) and F î (the 3-force per unit volume).
We investigated the power delivered by the radiation earlier when we con-

sidered the Compton effect; it was:

F 0̂ =
4π

15
neT

4
γ σT

Tγ − Tm

me
=

3

2
nṪm|Compton. (55)

This power corresponds to the heating of baryons by the CMB and the conse-
quent change in T 0̂0̂. However as long as we are treating the baryons as cold we
can neglect this effect and take

F 0̂ → 0. (56)

Of greater interest is the momentum exchange between the baryons and
photons. We found in the lectures on Compton scattering that the net force
experienced by an electron was

Fe = −σT j′γ , (57)
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where j′γ is the radiation momentum density in the baryon rest frame. This is
related to the momentum density in the normal frame by a Lorentz transfor-
mation,

(j′γ )̄i = −T(γ)µ̂ν̂(e0̄)
µ̂(eī)

ν̂ , (58)

where ī denotes baryon frame components. The baryon frame basis vectors are

(e0̄)
µ̂ = (1, vi

b) and (eī)
ν̂ = (vi

b, δij) (59)

to first order in the velocity, so

(j′γ )̄i = T 0̂î
(γ) − T 0̂0̂

(γ)v
i
b − T îĵ

(γ)v
j
b . (60)

Now since vb is first order, we may replace T 0̂0̂
(γ) and T îĵ

(γ) with their unperturbed

values ργ and ργ/3:

(j′γ )̄i = T 0̂̂i
(γ) −

4

3
ργvi

b. (61)

The component T 0̂̂i
(γ) exists at first order in the photon perturbations and cannot

be ignored. It is the momentum density in the normal frame so we can write it
as an integral over phase space:

T 0̂î
(γ) =

∫

2
p2 dp d2p̂

(2π)3
f(p, ˆbfp)pp̂i. (62)

Substitute in the equation for f in terms of Θ:

T 0̂̂i
(γ) =

1

4π3

∫

d2p̂ p̂i

∫

p3 dp

ep/[Tγ0(1+Θ)] − 1

=
1

4π3

∫

d2p̂ p̂i π4

15
T 4

γ0[1 + 4Θ(p̂i)]

=
ργ

π

∫

d2p̂ p̂i Θ(p̂i). (63)

Now each p̂i is a linear combination of spherical harmonics of order 1:

p̂1 =

√

2π

3
[−Y11(p̂) + Y1,−1(p̂)]

p̂2 = −
√

2π

3
i[Y11(p̂) + Y1,−1(p̂)]

p̂3 =

√

4π

3
Y10(p̂). (64)

This implies that:

T 0̂î
(γ) = −4iργ

(−Θ11 + Θ1,−1√
2

,−i
Θ11 + Θ1,−1√

2
, Θ10

)

. (65)

10



The force per unit volume F î is then ne times the force per electron Eq. (57),

F î = −4

3
neσT ργ

(

v1
b − 3i

Θ11 − Θ1,−1√
2

, v2
b + 3

Θ11 + Θ1,−1√
2

, v3
b + 3iΘ10

)

.

(66)
The inclusion of this force in the energy-momentum conservation equation

gives no change in the baryon density equation:

δ̇b = −3Ḋ − ∂i(Bi + vi
b). (67)

However for the velocity equation, we now have:

v̇i
b = −aHvi

b−A,i−
4

3
aneσT ργvi

b−4aneσT ργ

(

i
−Θ11 + Θ1,−1√

2
,
Θ11 + Θ1,−1√

2
, iΘ10

)

.

(68)
If we do the Fourier-multipole decomposition, we get:

δ̇b = −3Ḋ − ik(B3 + v3
b ) (69)

and

v̇3
b = −aHv3

b − ikA − 4

3
aneσT ργ(vi

b + 3iΘ10) (70)

for the scalars, and

v̇
(±1)
b = −aHv

(±1)
b − 4

3
aneσT ργ [v

(±1)
b + 3iΘ1,±1] (71)

for the vectors.
We often define R ≡ 3ρb/4ργ, which simplifies these equations. Note that

R = 0 at early times, but by recombination R ≈ 0.4. This gives us, for the
scalars,

δ̇b = −3Φ̇− ikvb;

v̇b = −aHvb − ikΨ +
τ̇

R
(vb + 3iΘ1). (72)

For the vectors,

v̇
(±1)
b = −aHv

(±1)
b +

τ̇

R
[v

(±1)
b + 3iΘ1,±1]. (73)
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