
1 Recombination - Overview

This lecture will cover the subject of cosmological recombination. The major
topics will be:

• Expansion history.

• Hydrogen recombination.

• Helium and lithium recombination.

• Compton heating and the gas temperature.

2 Expansion history

During our studies of the radiation-dominated era after e+e− annihilation, we
learned that the photon temperature T related to cosmic time t via:

T = 1.56g
−1/4

?,eff

√

1 s

t
MeV. (1)

Since g?,eff = 3.36 we have

T = 1.15

√

1 s

t
MeV, (2)

so the temperature drops to:

• 100 keV at 2 minutes

• 10 keV at 4 hours

• 1 keV at 2 weeks

• 100 eV at 4 yr

• 10 eV at 400 yr

• 1 eV at 40 kyr.

The redshift is related to temperature by

z =
T

Tγ0

− 1, (3)

where Tγ0 = 2.73 K= 0.235 milli eV is the CMB temperature today. So e.g.
the redshift at BBN (T = 100 keV) is 4 × 108.

Matter-radiation equality. However we’ve only considered the radiation
energy density (photons+neutrinos) so far in the Friedmann equations, whereas
matter (baryons and dark matter) is also present. The energy density of ra-
diation is ρr ∝ a−4 whereas for the matter ρm ∝ a−3. At some point the
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matter and radiation will have the same density, ρm = ρr. This epoch is called
matter-radiation equality. We’ll need to calculate it next since it determines the
expansion dynamics, and will also be important for CMB anisotropies.

The ratio of matter to radiation energy density is proportional to scale factor:

ρm

ρr
∝

a−3

a−4
= a, (4)

so we can find the epoch of equality if we know the matter and radiation densities
today:

aeq =
ρr0

ρm0

. (5)

The radiation energy density today is that of the CMB and the neutrinos:

ργ =
π2

30
g?,effT 4

γ0 = 7.8 × 10−34 g/cm3. (6)

A fraction 2/3.36 (60%) of this is in photons and 1.36/3.36 (40%) in neutrinos.
(I haven’t included starlight, which wasn’t around at matter-radiation equality
so we don’t consider it.)

The matter density is much harder to measure, but we can parameterize it
by the number Ωmh2, where h is the Hubble constant in units of 100 km/s/Mpc.
(We’ll discuss ways to measure this later.) The matter density today is

ρm0 =
3ΩmH2

0

8πG
= 1.879× 10−29Ωmh2 g/cm3. (7)

Remark: Ωmh2 includes all nonrelativistic matter, both baryons and dark mat-
ter: Ωmh2 = Ωbh

2 + Ωdmh2. From WMAP: Ωmh2 = 0.128± 0.008.
Taking the ratio gives us the scale factor at equality,

aeq = 4.15 × 10−5(Ωmh2)−1. (8)

This can be related to a redshift using 1 + z = a−1:

1 + zeq = 2.4 × 104Ωmh2, (9)

or a photon temperature:

Tγ,eq = 6.6 × 104Ωmh2 K = 5.7Ωmh2 eV. (10)

This is of the same order of magnitude as atomic physics energies is an accident
– so far as we know!

Detailed expansion history. We’ll need to understand how the expansion
of the Universe changes during the matter-radiation equality. The Hubble rate
is given by the Friedmann equation; neglecting curvature (which we can do early
in the Universe’s history), we find:

H2 =
8

3
πG(ρm + ρr)

=
8

3
πGρm

(

1 +
1

y

)

, (11)
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where y = a/aeq = ρm/ρr; this is then:

H2 =
8

3
πGρm0(aeqy)−3

(

1 +
1

y

)

= ΩmH2
0a−3

eq y−3

(

1 +
1

y

)

. (12)

The time can then be computed (homework exercise):

t =
2.6 kyr

(Ωmh2)2

[

2

3
(1 + y)3/2 − 2(1 + y)1/2 +

4

3

]

. (13)

Note that at late times, y � 1, we have t ∝ y3/2 ∝ a3/2, or a ∝ t2/3, as
appropriate for a matter dominated universe.

3 Hydrogen recombination – equilibrium theory

Now we consider the recombination process – how the ionized plasma of protons
and electrons turns into hydrogen atoms. (We’ll discuss what happens to He and
Li later.) This will be important to us because the CMB photons can Thomson
scatter off of electrons, but not atoms, so recombination is accompanied by a
transition from an opaque to a transparent universe.

Saha equation. Just as for BBN, we’ll begin our discussion by assuming
thermal equilibrium, and then come back and revisit the more detailed non-
equilibrium physics.

The formation of hydrogen atoms occurs via the reaction:

p+ + e− ↔ H(1s) + photons. (14)

I’ve labeled the ground state 1s of the hydrogen atom because we’ll consider ex-
cited states later. Since the photons have zero chemical potential (a blackbody!)
we have, in equilibrium,

µ(p+) + µ(e−) = µ(H, 1s). (15)

Recall that the chemical potential is:

µX = mX + T ln

[

nX

gX

(

2π

mXT

)3/2
]

. (16)

The degeneracy of the proton is 2 (2 spin states), the electron is 2 (same reason),
and the hydrogen atom is 4 (2 × 2). Equating the chemical potentials gives us:

mp+T ln
np

2
+

3

2
T

2π

mpT
+me+T ln

ne

2
+

3

2
T

2π

meT
= mH+T ln

n(H, 1s)

4
+

3

2
T

2π

mHT
.

(17)
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The mass difference between the hydrogen atom and the proton+electron is
called the ionization energy ε0:

ε0 = mp + me − mH, (18)

and for hydrogen it is 13.6 eV or 1.58 × 105 K.
Collecting the above terms, we find

npne

n(H, 1s)
=

(

mpmeT

2πmH

)3/2

e−ε0/T . (19)

The ratio of the proton and hydrogen atom mass is essentially 1, so

npne

n(H, 1s)
=

(

meT

2π

)3/2

e−ε0/T . (20)

This is called the Saha equation. It is also applicable to stellar interiors.
Application to cosmology. It is conventional in recombination studies

to define the ionization fraction xe, which is the number of free electrons per
hydrogen nucleus:

xe =
ne

nH,tot
, (21)

where in the denominator both neutral and ionized H are counted: nH,tot =
np + n(H, 1s). The abundance of p+, e−, and neutral H atoms (assumed all in
1s) is given by:

ne = np = xenH,tot and n(H, 1s) = (1 − xe)nH,tot. (22)

Since BBN produced a fraction XH = 0.76 of the initial mass in hydrogen, and
it is almost all 1H, we can write:

nH,tot = 0.76nb = 8.6 × 10−6Ωbh
2a−3 cm−3 = 4.2 × 105Ωbh

2T 3
4 cm−3, (23)

where T4 is the temperature in units of 104 K.
Substituting this into the Saha equation gives:

nH,tot
x2

e

1 − xe
=

(

meT

2π

)3/2

e−ε0/T ; (24)

or, moving nH,tot to the right and plugging in numbers:

x2
e

1 − xe
=

5.8 × 1015

Ωbh2T
3/2
4

e−15.8/T4 . (25)

With this equation and the WMAP value for Ωbh
2 we can track the equilibrium

recombination history:

• Half of the hydrogen recombines (xe = 0.5) by T4 = 0.374 or 3740 K;
z = 1370.
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• 90% of the hydrogen recombines (xe = 0.1) by T4 = 0.342 or 3420 K;
z = 1250.

• 99% of the hydrogen recombines (xe = 10−2) by T4 = 0.310 or 3100 K;
z = 1140.

But this calculation is no guarantee that thermal equilibrium is achieved, and
indeed we’ll see that it is not.

4 Hydrogen recombination – the Peebles model.

In the equilibrium calculation we showed that hydrogen recombines very quickly
and in the redshift range z ∼ 1370. But this was based on thermal equilibrium
and in order to see if this is what happens we need to do reaction kinetics.
The basic treatment of hydrogen recombination that we’ll follow here was by
Peebles (1968), and is often known as the “Peebles” model or the three-level
atom approximation.

The setup. The Peebles model considers three types of hydrogen:

• Hydrogen in the ground state, 1s (a fraction x1 of the total hydrogen).

• Hydrogen in an excited state, most likely 2s or 2p. The excited levels of
hydrogen are assumed to be in thermal equilibrium with each other,

xnl ∝ gnle
−Enl/T , (26)

since radiative excitation and decay are very fast. Note that this propor-
tionality does not apply to the ground state 1s (which is special!). We’ll
parameterize this by considering the total number of hydrogen atoms x2

in the excited states.

• Ionized hydrogen (fraction xp = xe of total hydrogen).

Peebles considers the following processes:

• Radiative recombination to the ground state, and its inverse, photoioniza-
tion:

p+ + e− ↔ H(1s) + γ. (27)

• Radiative recombination of a hydrogen atom to an excited state, and the
inverse photoionization:

p+ + e− ↔ H(nl, n ≥ 2) + γ. (28)

• Decay of an excited atom (probably in 2p) to the ground state, by emission
of a Lyman-α photon at a wavelength of 1216Å, and the inverse absorption
process:

H(2p) ↔ H(1s) + γ(1216Å). (29)
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• Decay of an atom in the 2s state to 1s by simultaneous emission of two
photons, and the inverse two-photon absorption process:

H(2s) ↔ H(1s) + γ + γ. (30)

Direct recombination to the ground state. The first reaction (#4) has
little effect because the photon’s energy is always greater than ε0 = 13.6 eV.
The cross section for absorbing photons just above 13.6 eV is

σpi = 6 × 10−18 cm2, (31)

whereas at redshift 1300 the density of hydrogen nuclei is 400 cm−3. Thus the
mean free path for one of these photons is

Lmfp =
1

n1sσpi
=

1

nHx1σpi
= 4 × 1014x−1

1 cm, (32)

and the photon is re-absorbed in time

Lmfp

c
∼ 104x−1

1 s. (33)

If the neutral fraction x1 exceeds 10−9 then the direct recombination photons
are absorbed in much less than a Hubble time, and hydrogen cannot recombine
this way. Hereafter we’ll leave this process out.

Recombination to the excited states. Now let’s consider the second
reaction. The rate of production of hydrogen atoms in excited states is given
by αnenp, where

α =
∞
∑

n=2

n−1
∑

l=0

〈σ[p+ + e− → H(nl) + γ]v〉 (34)

and the average is over the thermal velocity distribution. Note that we’ve left
out the ground state (n = 1). This number is called the Case B recombination
coefficient (the name comes from ISM research, in which “Case A” includes the
ground state). As long as the excited states of hydrogen get de-populated (we’ll
see how soon), the photon produced here is free to escape.

Once an atom is in an excited state it rapidly decays to n = 2. (The decays
to n = 1 are slow, as we’ll find out soon.) Thus:

ẋ2 = αnH,totx
2
e − βx2, (35)

where β2 is the thermal photoionization rate from the excited levels. (Techni-
cally a Boltzmann average.) We can calculate it from the principle of detailed
balance: in Saha equilibrium, we would have:

x2 = 4nH,totx
2
e

(

2π

meT

)3/2

eε0/4T , (36)
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where ε0/4 is the binding energy of the second level of hydrogen, and the 4 comes
from the fact that the n = 2 level has 16 states (4 electron orbital × 2 electron
spin × 2 proton spin) versus 2 each for the electron and proton (16/2/2=4).
This means that:

β =
α

4

(

meT

2π

)3/2

e−ε0/4T . (37)

Thus the rate of production of excited hydrogen atoms from process #4 is:

ẋ2 = α

[

nH,totx
2
e −

1

4

(

meT

2π

)3/2

e−ε0/4T x2

]

. (38)

There’s a corresponding rate of loss of free electrons, ẋe = −ẋ2.
The Case B recombination coefficient can be approximated by

α =
4.309 × 10−13T−0.6166

4

1 + 0.6703T 0.53
4

cm3 s−1. (39)

(Péquignot et al 1991 A&A 251,680).
Lyman-α decay. We next come to the decay of hydrogen atoms in 2p by

Lyman-α emission. The most obvious approximation to make is that we can
write a simple decay rate,

ẋ2 = −
3

4
A2px2, (40)

where the factor of 3/4 is the fraction of the hydrogen atoms in n = 2 in the p
orbital (statistical), and A2p = 6.2 × 108 s−1 is the 2p decay rate. But this is
wrong because the Lyman-α photons are quickyl re-absorbed. To see this, let’s
calculate the optical depth of Lyman-α photons. This is:

τ =

∫

n(H, 1s)σ dt = nH,totx1

∫

σ(ω)

|ω̇|
dω, (41)

where we’ve written the cross section σ for Lyman-α absorption as a function
of photon (angular) frequency ω. The optical depth is finite because ω̇ 6= 0,
i.e. the photon eventually redshifts out of the line. The rate of change of the
frequency is ω̇ = −Hω, and the Lyman-α line is narrow enough that we will
approximate the cross section as a δ-function:

σ(ω) = Sδ(ω − ωLyα). (42)

Then
τ =

nH,totx1

HωLyα
S. (43)

The integral of the cross section for absorption of Lyman-α radiation can be
obtained from the principle of detailed balance. If we put an H atom in a black-
body, then in equilibrium the rate of decay from 2p → 1s must be compensated
by the rate of absorption 1s → 2p. That is,

A2p[1 + f(ωLyα)]n(H, 2p) = n(H, 1s)

∫

∞

0

dnγ

dω
σ(ω) dω, (44)

7



where dnγ/dω is the number of photons per unit volume per unit frequency.
Putting in the values:

f(ωLyα) =
1

eωLyα/T − 1
(45)

and
dnγ

dω
=

ω2

π2(eω/T − 1)
, (46)

we find:

A2p
eωLyα/T

eωLyα/T − 1
n(H, 2p) = n(H, 1s)

Sω2
Lyα

π2(eωLyα/T − 1)
. (47)

Solving for S, we find:

S = π2A2pω
−2
LyαeωLyα/T n(H, 2p)

n(H, 1s)
. (48)

In thermal equilibrium, the last factor takes on its Boltzmann ratio 3e−ωLyα/T ,
so

S = 3π2A2pω
−2
Lyα. (49)

The optical depth is then

τ =
3π2A2pnH,totx1

Hω3
Lyα

. (50)

This is called the Sobolev optical depth and plays a key role in line foormation
in expanding media (the Universe; stellar winds; supernova remnants). It is
typically a few×108 during recombination, so Lyman-α photons are immediately
re-absorbed.

We can determine the probability P of re-absorption of the Lyman-α photon
by reparameterizing the line to run from 0 optical depth (at the red side of the
line) to τ (the blue side). If the emission frequency distribution equals that
of absorption (detailed balance!) then a Lyman-α photon is equally likely to
be emitted at any optical depth value τ ′ between 0 and τ . Thus the escape
probability is:

P = 〈e−τ ′

〉 =
1

τ

∫ τ

0

e−τ ′

dτ ′ =
1 − e−τ

τ
≈

1

τ
, (51)

where the last approximation holds for an optically thick line. To get net Lyman-
α emission, we should be multiplying our original Eq. (40) by P :

ẋ2 = −
3

4
A2px2P = −

3A2p

4τ
x2 = −

Hω3
Lyα

4π2nH,totx1

x2. (52)

To this rate we need to include a detailed balance correction for thermal exci-
tation by blackbody photons that redshift into Lyman-α:

ẋ2 = −
Hω3

Lyα

4π2nH,totx1

(

x2 − 4x1e
−ωLyα/T

)

, (53)
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where we’ve inserted a 4 in front of the last term because of the ratio of number
of states 16/4=4. Simplifying gives:

ẋ2 = −
Hω3

Lyα

π2nH,tot

(

x2

4x1

− e−ωLyα/T

)

. (54)

Of course there’s a corresponding contribution to the ground state abundance,
ẋ1 = −ẋ2.

Two-photon decay. The Lyman-α process is slow because the photon
usually gets re-absorbed. Under such circumstances, rare decays of the excited
hydrogen atom become important, such as two-photon decay:

H(2s) ↔ H(1s) + γ + γ, (55)

where neither photon has enough energy to excite a hydrogen atom. This decay
has a rate of Λ = 8.2 s−1, and applies to 1/4 of the n = 2 H atoms. In accordance
with our previous discussion:

ẋ2 = −Λ
(x2

4
− x1e

−ωLyα/T
)

. (56)

Putting it all together. We can find the net rate of production of excited
hydrogen atoms from the above equations:

ẋ2 = αnH,totx
2
e − βx2 −

(

Λ +
Hω3

Lyα

π2nH,totx1

)

(x2

4
− x1e

−ωLyα/T
)

. (57)

We assume that the excited hydrogen atoms are short-lived so that the rate of
production and rate of destruction at any given time are about the same. Then
we can set ẋ2 = 0 and find:

x2 = 4
αnH,totx

2
e + (Λ + Λα)e−ωLyα/T x1

Λ + Λα + 4β
, (58)

where

Λα ≡
Hω3

Lyα

π2nH,totx1

. (59)

The net rate of loss of electrons is then:

ẋe = −αnH,totx
2
e + βx2, (60)

or

ẋe = −αnH,totx
2
e + 4β

αnH,totx
2
e + (Λ + Λα)e−ωLyα/T x1

Λ + Λα + 4β
. (61)

This simplifies to:

ẋe = −
Λ + Λα

Λ + Λα + 4β
(αnH,totx

2
e − 4βx1e

−ωLyα/T ). (62)
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Using the relation for β in terms of α:

ẋe = −
Λ + Λα

Λ + Λα + 4β
α

[

nH,totx
2
e −

(

meT

2π

)3/2

x1e
−ε0/T

]

. (63)

The term in square brackets is zero in thermal equilibrium (Saha equation!)
so this equation satisfies detailed balance. It’s called the Peebles equation and
you’ll use it on the homework.

Results. The Peebles equation predicts that recombination is delayed rela-
tive to the Saha equation prediction:

• Half of the hydrogen recombines (xe = 0.5) by z = 1210 (z = 1370 for
Saha).

• 90% of the hydrogen recombines (xe = 0.1) by z = 980 (z = 1250 for
Saha).

• 99% of the hydrogen recombines (xe = 10−2) by z = 820 (z = 1140 for
Saha).

Unlike the Saha prediction, the electron abundance freezes out at a nonzero
value; modern estimate is 2 × 10−4.

Improvements. Since the Peebles paper a number of improvements have
been suggested and/or included in recombination codes, such as:

• Follow all excited levels of H, rather than lumping them all into a single
level. (Speeds up recombination!)

• Radiative feedback: Lyman-β (1s−3p; 1026Å) photons are produced early
and redshift to Lyman-α (1216Å).

• Collisions.

• Two-photon decays from other excited levels (3s, 3d, etc.)

• Finite width of Lyman-α line.

These effects change recombination at the few percent or less level, but are
necessary for high-precision experiments such as Planck.

5 Helium and lithium recombination

Helium. Helium has two electrons and recombines in two stages: He2+ →He+,
and He+ →He. The ionization energies are 54.4 and 24.6 eV. These are larger
than for H so He recombines first.

The first helium recombination obeys a Saha equation,

nH,tot
xex(He2+)

x(He+)
=

(

meT

2π

)3/2

e−54.4eV/T ; (64)
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the difference from hydrogen is the species on the left side. Half of the He2+

recombines to He+ by z = 5800. The reaction rates are fast enough that this
recombination proceeds in equilibrium.

The second helium recombination (He+ →He0) is trickier. The Saha equa-
tion is

nH,tot
xex(He+)

x(He0)
= 4

(

meT

2π

)3/2

e−24.6eV/T , (65)

with a 4 because to form the ground state of He0 the two electrons must com-
bine to form a spin singlet. The Saha equation predicts that half of the He+

recombines to He0 by z = 2500.
However this recombination does not proceed according the Saha equation.

One can draw a network of excited levels just as for hydrogen. The ground level
is 1s2 1S0, and the excited levels can be divided into two classes: spin singlets
1snl 1LL and spin triplets 1snl 3LL−1,L,L+1. (Doubly excited states such as
2s2p 1P1 are unimportant.) In the nonrelativistic quantum theory radiative
transitions can’t flip the electron spins so singlets and triplets are separate. In
the full relativistic theory electron spins can flip, but the associated rates are a
factor of ∼ α2 slower.

The routes to the ground state for He are:

• Two-photon decay from the 1s2s 1S0 level.

• Redshifting of the singlet spectral line 1s2p 1P1 → 1s2 1S0, 584Å.

• Redshifting of the spin-forbidden spectral line 1s2p 3P1 → 1s2 1S0, 591Å.

• Absorption of 584Å radiation by the small amount of neutral H present.

The last effect is hard to calculate because it requires analysis of the line shapes
and scattering of radiation. We won’t do the calculation here but the answer is
(see e.g. Switzer & Hirata 2007):

• Half of the He+ recombines to He0 by z = 2000.

• 90% is recombined to He0 by z = 1830.

Lithium. In principle, Li captures its electrons in 3 stages:

• Li3+ →Li2+, ionization energy 122.4 eV.

• Li2+ →Li+, ionization energy 75.6 eV.

• Li+ →Li0, ionization energy 5.4 eV.

The first two reactions occur in Saha equilibrium, but have no observable con-
sequences because the Li doesn’t contribute significantly to the electron density
and hence the opacity.

From the Saha equation, the final stage of lithium recombination should
occur at z ∼ 500 and there was some excitement about this possibility because
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it was hoped that the Li0 resonance lines could be observed via scattering of the
CMB. However it turns out that the final stage of lithium recombination never
happens because the Lyman-α photons from hydrogen recombination (energy
10.2 eV) are sufficient to keep lithium singly ionized. So it’s believed that the
lithium never captured its last electron.

6 Matter temperature

So far we’ve considered the ionization state of the gas, but we haven’t said much
about the temperature. We’ve implicitly assumed thermal equilibrium between
the baryonic matter and the photons, Tm = Tγ . This is true early on in the
Universe but not later (and certainly not today)! This is because the gas in the
Universe is subject to several major sources of heating and cooling:

• Adiabatic expansion – the gas is expanding so it cools. (It heats later if it
falls into a galaxy and is compressed.)

• Compton heating/cooling – scattering of CMB photons can heat or cool
the gas.

• Photoionization/recombination – when an atom is ionized, the energy of
the absorbed photon is given to the gas; when it recombines and radiates
a photon, the photon’s energy is lost.

• Line emission – when a collision excites an atom and then it radiates a
line photon, the gas is cooled.

• Shocks – shocking a gas increases the temperature (and the entropy – not
an adiabatic process!)

• Bremsstrahlung – collisions of charged particles in a gas cause it to radiate
electromagnetic waves.

All of these are important in intergalactic gas (and in galaxies even more effects
are important!) But we’ll focus on adiabatic expansion and the Compton effect
as these dominate at z > 50.

The matter has much less heat capacity than the photons (more degrees of
freedom) so the CMB redshifts as Tγ ∝ a−1 almost unaffected by the matter
temperature. (Exception is Sunyaev-Zel’dovich effect.)

Adiabatic expansion. The particles in a gas are slowed down by the
expansion of the Universe because their de Broglie wavelength λ = 2π/p is
redshifted as λ ∝ a. Therefore the momentum of the particle goes as

p ∝ a−1. (66)

Their kinetic energy EK goes as

EK =
p2

2m
∝ a−2, (67)
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since they are nonrelativistic. Therefore the temperature declines as Tm ∝ a−2,
or

Ṫm|adiabatic = −2
ȧ

a
Tm = −2HTm. (68)

If there were no interactions of the matter and photons, the temperature of the
matter would decline faster than the CMB and thus it would be colder than the
CMB.

Compton effect. The main mode of coupling between the baryons and
photons is Compton scattering:

e− + γ → e− + γ. (69)

This process can change the electron’s energy and hence the matter temperature.
So let’s calculate this in two parts: the heating due to recoil of the electron
during scattering of a photon, and the cooling due to energetic electrons giving
some of their energy back to the CMB. We’ll do this in the nonrelativistic limit
(Thomson scattering).

Heating first: when a photon of energy ω scatters off an electron, and is
deflected by an angle θ, the momentum transfer is

q = |ω(1, 0, 0)− ω(cos θ, sin θ, 0)| = ω

√

(1 − cos θ)2 + sin2 θ. (70)

The energy delivered to the electron is

∆Erecoil =
q2

2me
=

ω2

2me
[(1 − cos θ)2 + sin2 θ].

=
ω2

2me
[1 − 2 cos θ + cos2 θ + sin2 θ]

=
ω2

me
(1 − cos θ). (71)

In order to get a heating rate we need the average energy, which is

〈∆Erecoil〉 =
ω2

me
(72)

because Thomson scattering is equally likely to be forward as backward, hence
〈cos θ〉 = 0.

Thus the heating rate in erg/cm3/s is

Γ = nenγσT 〈∆Erecoil〉 = nenγσT
〈ω2〉

me
, (73)

where σT is the Thomson cross section, and the average is taken with equal
weighting of each photon. (Speed of light is 1.)

This is the heating rate for a perfectly cold gas (Tm = 0) where all electrons
are initially at rest. But the real gas isn’t perfectly cold, instead the electrons are
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moving and will give some of their energy to the CMB via so-called “Compton
drag.” Consider an electron is moving at velocity ve in the x-direction, and
suppose that the CMB is isotropic in the comoving frame. However in the
electron’s rest frame, the CMB has a net momentum density: the electron sees
more photons going “backward” than forward. To calculate this momentum
density, recall that in the comoving frame the CMB stress-energy tensor is

T µν =









ργ 0 0 0
0 1

3
ργ 0 0

0 0 1
3
ργ 0

0 0 0 1
3
ργ









. (74)

The electron’s 4-velocity is

uµ =
1

√

1 − v2
e

(1, ve, 0, 0), (75)

and it carries three spatial vectors:

(e1̂)
µ =

1
√

1 − v2
e

(ve, 1, 0, 0)

(e2̂)
µ = (0, 0, 1, 0)

(e3̂)
µ = (0, 0, 0, 1). (76)

In the electron frame the net momentum density of the photons is (we’ll prime
the electron frame)

j′γ = −Tµνuµ(e1̂)
ν = −

4ve

3(1 − v2
e)

ργ ≈ −
4

3
veργ , (77)

where we’ve taken the nonrelativistic electron limit at the end of the calculation
(small ve). Now since in Thomson scattering a photon is as likely to be reradi-
ated forward as backward, the electron picks up the momentum of each photon
it scatters. The force on the electron is then:

F = nγσT 〈p
′

γ〉, (78)

where nγσT is the scattering rate (in scatterings per electron per second), and
the average is the mean momentum of the photons. But nγ〈p

′

γ〉 is the photon
momentum density j′γ , so:

F = σT j′γ = −
4

3
σT ργve = −

4

3
σT nγ〈ω〉ve. (79)

The electron’s loss of energy is −F · ve, so we can calculate net energy loss per
unit volume per unit time:

Λ = −ne〈F · ve〉 =
4

3
σT nenγ〈ω〉〈v

2
e〉. (80)
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The RMS velocity in a Maxwellian distribution is
√

3Tm/me, so

Λ = 4σT nenγTm
〈ω〉

me
. (81)

We can now calculate the net difference of heating and cooling:

Γ − Λ = nenγσT
〈ω2〉 − 4Tm〈ω〉

me
. (82)

This is the “textbook” formula for the Compton effect. It is useful in e.g. AGN
coronae. For a blackbody radiation field, we can simplify this by using the
known equations for the frequency distribution of a blackbody:

nγ =
2ζ(3)

π2
T 3

γ

〈ω〉 =
π4

30ζ(3)
Tγ

〈ω2〉 =
12ζ(5)

ζ(3)
T 2

γ . (83)

Here ζ is the Riemann ζ-function; ζ(3) = 1.202057, ζ(5) = 1.036928. So we find
that: We can now calculate the net difference of heating and cooling:

Γ − Λ =
4π2

15
neT

4
γ σT

0.958057Tγ − Tm

me
. (84)

This is the net heating rate (in the matter) per unit volume per unit time. But
there’s a big problem: if 0.958057Tγ < Tm < Tγ , this formula predicts that the
matter loses energy to the photons – even though the photon temperature is
hotter than the matter! This contradicts the second law of thermodynamics so
we must have done something wrong.

It turns out the resolution of the paradox is to consider an additional source
of heating: the stimulated-Compton effect,

e− + γ → e− + γ, (85)

in which the emission of the second photon is stimulated. For a blackbody
distribution, you will prove (see exercises!) that there is an additional heating
source:

Γstim =
4π2

15
neT

4
γ σT

0.041943Tγ

me
, (86)

which augments the usual Compton terms to give a net heating:

Γ + Γstim − Λ =
4π2

15
neT

4
γ σT

Tγ − Tm

me
. (87)

Temperature evolution. In order to finish our calculation, we need the
heat capacity per unit volume. For a monatomic gas, this is

Cv =
3

2
n, (88)
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where n is the total density of all species (electrons, protons, atoms). Consid-
ering only hydrogen this is nH,tot(1 + xe). Thus:

Ṫm|Compton =
Γ + Γstim − Λ

Cv
=

8π2xeT
4
γ σT (Tγ − Tm)

45me(1 + xe)
. (89)

The total matter temperature equation is:

Ṫm = −2HTm +
8π2xeT

4
γ σT

45me(1 + xe)
(Tγ − Tm). (90)

The behavior of this equation depends on the ratio:

R =
4π2xeT

4
γ σT

45me(1 + xe)H
. (91)

If R � 1 then the coefficient of the second term in Eq. (90) is much larger
than the Hubble constant, so to a good approximation we have Tm ≈ Tγ . Once
R � 1 the second term is negligible and the matter temperature decouples from
the CMB and redshifts as Tm ∝ a−2. Since Tγ ∝ a−4 and H ∝ a−3/2 in matter
domination, R is a decreasing function of a (or t). So the matter temperature
is coupled to the CMB temperature at early times, and then decouples.

This transition turns out to occur at z ∼ 150, when Tγ ∼ 400 K. After this
the matter temperature declines as Tm ∝ a−2. By z = 50 the CMB has cooled
to 135 K, while the matter is at only 50 K. The matter temperature is eventually
increased by photoionization heating when the first stars and galaxies turn on.
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