
1 Big Bang Nucleosynthesis: Overview

A few seconds after the Big Bang, almost all of the energy density in the Universe
was in photons, neutrinos, and e+e− pairs, but some was in the form of baryons.
We thus come to the subject of BBN: the production of the light elements in the
first few minutes after the Big Bang. We will discuss the subject in 3 phases:

• The determination of the neutron:proton ratio.

• Fusion and radioactive decay to produce D, 3He, 4He, 7Li.

• The observation and interpretation of light element abundances.

See also Dodelson §3.2 & 1.3.

2 The n : p
+ ratio

Neutrons and protons are interconverted by weak interactions:

n ↔ p+ + e− + ν̄e

n + νe ↔ p+ + e−

n + e+ ↔ p+ + ν̄e. (1)

Equilibrium physics. Let’s examine how these reactions play out before
e+e− annihilation (T ≥ 200 keV) and when the weak interactions are fast (turns
out to be T > 1 MeV). The electron chemical potential is negligible in this case,
and neutrino chemical potential is essentially zero (in standard model!), so we
should have

µn = µp. (2)

The chemical potential is related to abundance for a nonrelativistic species (re-
call T ≪ mp, mn):

µX = mX + T ln

[

nX

gX

(

2π

mXT

)3/2
]

, (3)

where gX is the degeneracy (2s + 1; 2 for n or p+). The equilibrium condition
then gives

nn

np
= e−(mn−mp)/T = e−Q/T . (4)

We’ve defined Q = mn − mp = 1.293 MeV. So at high temperatures (T ≫ Q)
and in thermal equilibrium there are the same number of neutrons as protons.
As T drops we have fewer neutrons, and eventually in thermal equilibrium they
all go away.

Non-equilibrium physics. But the real Univese is not in thermal equilib-
rium and we’d better explore the consequences. Let’s define a fraction Xn of
the baryons to be neutrons and Xp = 1 − Xn to be protons. Then we have

Ẋn = −λnpXn + λpn(1 − Xn), (5)
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where λnp and λpn are the n → p+ and p+ → n conversion rates (units are

1/sec). Without doing any work, we know that Ẋn = 0 in thermal equilibrium,
i.e. if Xn/(1 − Xn) = e−Q/T . Therefore:

λpn = λnpe
−Q/T (6)

and
Ẋn = λnp[−Xn + e−Q/T (1 − Xn)]. (7)

The transition rate λnp from the 2-body reactions is

λnp = n(νe)〈σ(nνe → p+e−)v〉th + n(e+)〈σ(ne+ → p+ν̄e)v〉th, (8)

where the averages are thermal and v is the velocity of the initial particle (≈ 1
since they are relativistic). The averaged cross sections are an exercise in weak
interaction theory (not discussed in this course since it requires QFT). The
result is (for relativistic electrons):

Number density,

n(νe) =
3ζ(3)

4π2
T 3; n(e+) =

3ζ(3)

2π2
T 3. (9)

Cross sections,

〈σ(nνe → p+e−)v〉th =
510π2

3ζ(3)τnQ5
(12T 2 + 6QT + Q2).

〈σ(ne+ → p+ν̄e)v〉th =
255π2

3ζ(3)τnQ5
(12T 2 + 6QT + Q2). (10)

(These are written in terms of neutron lifetime τn because they contain the same
matrix element.)

As an example, at 1 MeV these numbers are:

• Densities: n(νe) = 1.2 × 1031 cm−3; n(e+) = 2.4 × 1031 cm−3.

• Cross sections: 〈σ(nνe → p+e−)v〉th = 7 × 10−32 cm−3 s−1; 〈σ(ne+ →
p+ν̄e)v〉th = 4 × 10−32 cm−3 s−1.

• Neutron-proton conversion rate, λnp = 1.7 s−1.

• Equilibrium ratio, (n : p+)eq = 1 : 3.6.

• Age of Univese: t = 0.74 s.

One can see that the conversion time λ−1
np is comparable to the age of the Univese

at a temperature of ∼ 1 MeV. At later times, T ∝ t−1/2, and λnp ∝ T 3 ∝ t−3/2,
so the neutron-proton conversion time λ−1

np ∝ t3/2 becomes longer than the age
of the Universe. Therefore we get freeze-out – the reaction rates become slow
and the n : p+ ratio goes to a constant.
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The freeze-out calculation will be a homework exercise; the answer is n :
p+ = 0.15. Note that this doesn’t depend on numbers like the baryon density,
etc.

After freeze-out the neutron abundance continues to decline because it is
unstable with a lifetime of τn = 886 s to:

n → p+ + e− + ν̄e. (11)

Thus the actual neutron abundance is

Xn = 0.15e−t/τn. (12)

We’ll see that BBN occurs at a time of ∼ 200 s after the Big Bang so Xn = 0.12
then.

3 Fusion and light nuclei

Baryon abundance. To discuss formation of the light nuclei we’ll need to
know the baryon abundance. Cosmologists usually report this in terms of the
fraction of critical density Ωb. The density of baryons today is then:

ρb0 =
3ΩbH

2
0

8πG
= 1.879 × 10−29Ωb

(

H0

100 km/s/Mpc

)2

g/cm
3
. (13)

Cosmologists usually define the dimensionless number h by

h =
H0

100 km/s/Mpc
, (14)

which is about 0.7 (recall lectures on H0). Then the baryon density today is

ρb0 = 1.879× 10−29Ωbh
2 g/cm

3
, (15)

or dividing out by the nucleon mass the number density today is

nb0 = 1.13 × 10−5Ωbh
2 cm−3. (16)

This is today, at a CMB temperature of T = 2.73 K. If we use the fact that
(after e+e− annihilation) the temperature decreases as a−1 and the baryon
density decreases as a−3, we find

nb0 = 5.6 × 1020Ωbh
2T 3

9 cm−3, (17)

where T9 is the temperature in GigaKelvin.
The baryon density is small (e.g. Ωbh

2 = 0.02229 ± 0.00073 from the CMB
data, Spergel et al 2007 ApJS 170, 335). We’ll see that BBN occurs at T9 ∼ 1
so the baryon density is ∼ 1019 baryons per cm3 – less than the density of air!

Equilibrium nucleosynthesis theory. We discussed the chemical poten-
tial of a species, µX , above in Eq. (3). If a nucleus with Z protons, N neutrons,
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Nucleus g(AZ) = 2I + 1 B(AZ), MeV Decay mode
2H 3 2.22 stable
3H 2 8.48 β →3He (12.6 yr)
3He 2 7.72 stable
4He 1 28.30 stable
6Li 3 31.99 stable
7Li 4 39.25 stable
7Be 4 37.60 electron capture to 7Li (53 days)
12C 1 92.16 stable

and baryon number A = Z + N is in equilibrium, it should have chemical po-
tential:

µ(AZ) = Zµp + NµN . (18)

We define the binding energy of the nucleus to be the difference between the
mass of its protons and neutrons, and the nucleus itself:

B(AZ) = Zmp + Nmn − m(AZ). (19)

The abundance by mass X(AZ) = An(AZ)/nb in equilibrium is then:

X(AZ) =
g(AZ)

2A
A5/2

(

2π

mnucT

)(3/2)(A−1)

nA−1
b XZ

p XN
n eB(AZ)/T . (20)

(The 2A is from proton and neutron spin states.) The proton and neutron abun-
dances Xp,n are determined by fixing the total number of protons and neutrons.
If this equation holds, we say that we have nuclear statistical equilibrium or
NSE.

Note that formation of heavy nuclei is favored at low temperatures (expo-
nential factor) and high density (nA−1

b factor).
Because we have the baryon density as a function of temperature, for a

given n/p ratio we can immediately work out the equilibrium abundances as a
function of time. Simplify to:

X(AZ) =
g(AZ)

2A
A5/2(9.3 × 10−14Ωbh

2T
3/2
9 )A−1XZ

p XN
n eB(AZ)/T . (21)

The exponential has to be very large in order to overcome the tiny factor 9.3×
10−14Ωbh

2 and for this reason nuclei don’t form until the temperature falls well
below 1 MeV.

In NSE, half of the neutrons are absorbed into 4He at T9 = 3.3, or t = 16 s.
(Deuterium is never favored by NSE, e.g. at 16 s we have XD,NSE = 6×10−12.)
Half of the helium is burned to 12C at T9 = 1.12, or t =140 s. But NSE doesn’t
apply at low temperatures because the reaction rates are too slow.

Deuterium and 4He production. At the low densities of BBN the 4-body
reaction:

p+ + p+ + n + n →4 He (22)
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is very slow. The only way to make helium is to first make deuterium:

p+ + n ↔2 H + γ, (23)

then build A = 3 nuclei by 2-body reactions:

2H + p+ ↔ 3He + γ
2H +2 H ↔ 3H + p+

2H +2 H ↔ 3He + n. (24)

(The 2H−2H reaction is 5 orders of magnitude faster than 2H-p+ but there’s
more p+ than 2H.) Finally we make 4He:

3H + p+ ↔ 3He + n
3H +2 H ↔ 4He + n

3He +2 H ↔ 4He + p+. (25)

Deuterium has a binding energy of 2.22 MeV. Consequences are (1) its equi-
librium abundance is very small, and (2) it is easily destroyed by photons so
Eq. (23) remains in equilibrium. (Photodisintegration is faster than Hubble ex-
pansion or any competing D destruction process.) Before helium forms, when
Xp = 0.88 and Xn = 0.12, this abundance is

X(2H) = 4 × 10−14Ωbh
2T

3/2
9 e25.8/T9 . (26)

At late times (T9 < 1.5, t > 40 s), A = 3 nuclei are thermodynamically
favored over protons and neutrons, and 4He is favored over 3H,He, so once an
A = 3 nucleus is formed by Eq. (24) it has negligible probability of going back to
deuterium. Most burn to 4He. Thus during this era, 4He builds up in accordance
with

Ẋ(4He) = 2X(2H)Xpnb〈σv〉Dp + 2X(2H)2nb〈σv〉DD. (27)

(The 2 is because these are mass fractions, not number fractions, and 4He is
twice as massive as 2H.)

This situation comes to an end at T9 ≈ 0.8, t = 200 s (homework exer-
cise!), when the production of 4He exhausts the supply of neutrons. The final
abundance of 4He is then:

X(4He)final = 2Xn,initial ≈ 0.24, (28)

where the factor of 2 is because each gram of neutrons yields two grams of
4He (the protons provide the other gram). The final quantity of 4He depends
somewhat on Ωbh

2 because at higher Ωbh
2 the neutrons are converted to 4He

earlier and have less time to decay, hence more 4He is produced.
After the neutrons run out the deuterium abundance falls as it burns (Eq. 24)

mainly to 3He and then to 4He. The peak abundance is ∼ 0.01. Because the
fusion rates decline sharply with temperature some 2H, 3H, and 3He is left
unburned. Any remaining 3H decays to 3He. Final abundances are:
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• X(2H) ∼ 5 × 10−5. Often quoted as D:H ratio by number, ∼ 3 × 10−5.

• X(3He) ∼ 3 × 10−5. Or: 3He:H∼ 10−5.

More 2H and 3He are produced at lower densities because it is harder to destroy
them.

Heavier elements. Some A = 7 nuclei are produced by the following
reactions:

3He +4 He ↔7 Be + γ
3H +4 He ↔7 Li + γ. (29)

The two nuclei can be interconverted by the reaction

7Be + n ↔7 Li + p+ (30)

and destroyed by
7Li + p+ → 24He. (31)

At high baryon densities (Ωbh
2 ≥ 0.01) more 7Be than 7Li is produced because

the last reaction depletes 7Li. The 7Be eventually captures an electron (when
the temperature of the Universe gets low enough!) and decays to 7Li:

7Be + e− →7 Li + νe. (32)

Total predicted yield is small: by mass X(7Li)=3 × 10−9, by number 7Li:H∼
4 × 10−10. The 7Be yield increases with Ωbh

2.
Nuclei with A > 7 are not produced in significant quantities:

• 8Be unstable, decays to 24He with half-life of 10−12 s.

• Proton/neutron capture rates insufficient for 7Li→8Li→9Be.

• Triple-alpha reaction, 34He→12C+photons, too slow at low density.

See e.g Fig. 1.8 of Dodelson for abundance predictions.

4 Observational tests

Now we’d like to know how well the observed abundances of the light nuclei
match the predictions. In addition to measurement errors, we must be aware of
three additional types of error:

• Reaction rate uncertainties – many reaction rates are poorly determined.

• Astration – has the matter being observed been processed in stars, which
could alter abundances?

• Fractionation – have the elements, or even isotopes of the same element,
been separated by chemical or physical processes?
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Helium-4. The 4He abundance is usually measured from emission line
strengths in ionized gas clouds. Since 4He is also produced in stars, one plots
X(4He) as a function of oxygen abundance and extrapolates to zero oxygen.
Olive & Skillman (2004, ApJ, 617, 29) find 0.232 < X(4He) < 0.258. From
WMAP baryon abundance, prediction is 0.2482± 0.0003± 0.0006.

The central value is lowered to 0.2468 if the short neutron lifetime, 880 s,
from Serebrov et al 2005 (Phys Lett B 605,72) is correct. (Shorter neutron
lifetime means faster weak rates so the freeze-out of n : p+ ratio occurs later.
Fewer neutrons then means less 4He.) In either case there is agreement with
the observations.

Deuterium. The 2H abundance (D:H ratio by number) depends strongly
on location:

• Planets: D:H=150 ppm on Earth; ∼ 1% on Venus; 10–40 ppm on Jupiter.

• ISM, based on UV absorption: ∼10–40 ppm, highly variable.

• Intergalactic Lyman-α absorption (H 1216Å line, 1s → 2p, 1H and 2H
split due to reduced mass effect): 16–40 ppm.

The intergalactic absorption is probably the most reliable indicator of primordial
abundance since deuterium is burned in stars. The value on terrestrial planets
is significantly affected by fractionation.

Compare to prediction from WMAP baryon abundance: 25.7+1.7
−1.3 ppm.

Helium-3. This is hard to measure, and hard to interpret since 3He can
be either created or destroyed in stars (2H is only destroyed). Bania et al
2002 (Nature 415, 54) provide upper limit of 3He:H ratio (by number) of 15
ppm using the 3He+ hyperfine transition (wavelength 3.5 cm). Compare to
prediction 10.5 ± 0.3 ± 0.3.

Lithium. Lithium is produced both in BBN and by cosmic ray spallation,
and is destroyed in stars (7Li+p+ reaction). Typically observed through 6708Å
doublet (1s22s−1s22p transition of neutral Li) and 6104Å triplet (1s22p−1s23d)
in absorption in stellar atmospheres. Can separate 6Li vs. 7Li based on line
shape. The BBN prediction is that, by number, 7Li:H=(4.4 ± 0.3) × 10−10.

Observed that for low-metallicity stars, there is a plateau in 7Li:H versus
metal abundance, at values (1.3 ± 0.2) × 10−10. (Factor of 3 discrepancy!)
Potential systematics:

• Destruction of 7Li in stars?

• Stellar atmosphere modeling?

• Rate for important destruction mechanism grossly underestimated, or pro-
duction overestimated?

Any solution based on stellar astrophysics must also account for small scatter
(∼7%) in 7Li:H ratio at given metallicity (Fe:H).

The problem is made worse by the observation of 6Li (e.g. Asplund et al 2006
ApJ 644, 229), with abundance 6Li:H∼ 10−11. BBN should produce essentially
no 6Li (∼ 10−14). This raises tensions:
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• Maybe 6Li was produced by cosmic ray interactions before the Galaxy was
formed? Accelerate 4He, impact on 4He to make Li. But also makes 7Li
problem worse.

• If 7Li was burned during stellar evolution, 6Li should have been destroyed
– 6Li+p+ →4He+3He is faster than burning 7Li.

This remains an outstanding problem in cosmology. The most exciting possi-
bility is that there is new physics involved, but the case is far from solid.
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