
We now follow the thermal history of the Universe. (c.f. Dodelson 2.4, 3.1,
3.2). The major steps here will be:

• Relativistic plasma (z ≥ 1010).

• Neutrino decoupling (z ∼ 1010).

• e+e− annihilation (z ∼ 2 × 109; T ∼ me).

• Big Bang nucleosynthesis (z ∼ 2 × 108).

• Nonrelativistic plasma.

• Recombination (z ∼ 103).

• Dark ages.

• First stars/galaxies; reionization (z ∼ 10).

• Cosmological constant (z < 1).

• The future.

1 Relativistic plasma

We will concern ourselves first with the equation of state for a relativistic plasma
with no chemical potentials, and then find the expansion history. The assump-
tions of no chemical potential and thermal equilibrium are appropriate at early
times, and we’ll see when they break down.

Plasma density. Let’s consider a gas of bosons and fermions at tempera-
ture T . The phase space density of these particles will be:

f(q) =
1

eE(q)/T ± 1
, (1)

where q is the momentum,

E(q) =
√

m2 + q2 (2)

is the dispersion relation, and the + sign is for fermions, − for bosons. The
total density of these particles is

ρ = g

∫

d3q

(2π)3
E(p)f(q) =

g

2π2

∫ ∞

0

q2f(q) dq, (3)

where g is the degeneracy of the particle (2s + 1 for massive particles, 2 for
photons, 1 for scalars or neutrinos). Can simplify:

ρ =
g

2π2

∫ ∞

0

q2
√

q2 + m2

exp[(m2 + q2)1/2/T ]± 1
dq. (4)
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Let’s define x = q/T , so

ρ =
g

2π2
T 4

∫ ∞

0

x2
√

x2 + (m/T )2

e
√

(m/T )2+x2 ± 1
dx. (5)

Let’s define ξ = m/T and define the integral to be I±(ξ), so that

ρ =
g

2π2
T 4I±

(m

T

)

. (6)

The total density is the sum of this over all of the species present.
A general expression for I±(ξ) is hard but we can do two limiting cases.
Case I: ξ → 0. In this case the integral reduces to

I±(0) =

∫ ∞

0

x3

ex ± 1
dx. (7)

Can use geometric series formula on the denominator:

1

ex ± 1
=

e−x

1 ± e−x
=

∞
∑

j=1

(∓1)j−1e−jx. (8)

So:

I±(0) =

∞
∑

j=1

(∓1)j−1

∫ ∞

0

x3e−jx dx =

∞
∑

j=1

(∓1)j−1 3!

j4
= 6

∞
∑

j=1

(∓1)j−1

j4
. (9)

For the bosons we have the + sign and the sum is ζ(4) = π4/90, so

I−(0) =
π4

15
. (10)

For the fermions we have the − sign and

I+(0) = 6

(

1 −
1

24
+

1

34
−

1

44
+ ...

)

= 6

(

1 +
1

24
+

1

34
+

1

44
+ ...

)

− 12

(

1

24
+

1

44
+ ...

)

= 6

(

1 +
1

24
+

1

34
+

1

44
+ ...

)

−
12

24

(

1 +
1

24
+

1

34
+

1

44
+ ...

)

= 6ζ(4) −
12

24
ζ(4)

=

(

1 −
12/24

6

)

I−(0). (11)

The factor in parentheses evaluates to 7/8, so

I+(0) =
7

8
I−(0). (12)
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So if all of the species of interest are effectively massless (m ≪ T ) we can
write

ρtot =
∑

X

ρX =
∑

X

gX

2π2
T 4I±(0) (13)

Since I−(0)/(2π2) = π2/30,

ρtot =
π2T 4

30

∑

X

gX

{

1 bosons
7/8 fermions

(14)

The summation is often given the letter g⋆.
Case II: ξ ≫ 1, i.e. m ≫ T . In the absence of a chemical potential we expect

very few particles of this species. Let’s see how few.

I±(ξ) =

∫ ∞

0

x2
√

x2 + ξ2

e
√

x2+ξ2 ± 1
dx. (15)

In the denominator the exponential dominates, and increases rapidly if x is
comparable to ξ, so only x ≪ ξ contributes. Then can replace the square root
in the numerator by ξ:

I±(ξ) =

∫ ∞

0

x2ξ

e
√

x2+ξ2

dx. (16)

Let’s Taylor expand the square root to the lowest order in x (since x ≪ ξ):

I±(ξ) =

∫ ∞

0

x2ξ

eξ+x2/(2ξ)
dx = ξe−ξ

∫ ∞

0

x2e−x2/(2ξ) dx. (17)

The last integral is Gaussian and evaluates to
√

π/2 ξ3/2. Thus,

I±(ξ) =

√

π

2
ξ5/2e−ξ. (18)

From Eq. (10) we can find

I±(ξ)

I−(0)
=

15

21/2π7/2
ξ5/2e−ξ. (19)

This is ≪ 1 so we conclude that a massive species (m ≫ T ) contributes much
less to the energy density than the massless (m ≪ T ) species.

If in between, must do numerically. Case I is good to ∼ 10% for m/T < 0.95,
but for Case II to be valid need m/T > 35.

In any case we can define a generalized g⋆,

g⋆ =
∑

X

gX
I±(ξ)

I−(0)
, (20)
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which reduces to the usual equation in the massless case. It is exactly true that

ρ =
π2g⋆T

4

30
. (21)

Plasma pressure and entropy density. For a fully relativistic gas, where
the masses are truly zero, we know the pressure is p = ρ/3. But we can find the
pressure for the general case using the thermodynamic relations. (Also a good
review!) Let’s define S=total entropy of volume V , s=entropy density. Then
from the first law of thermodynamics,

dU = T dS − p dV +
∑

X

µX dNX , (22)

where µX are chemical potentials. But we don’t have chemical potentials, so
we can drop the last term. Using U = ρV :

d(ρV ) = T d(sV ) − p dV (23)

or
ρ dV + V dρ = Ts dV + TV ds − p dV. (24)

Now s and ρ depend only on T , not on V so we can write

ρ dV + V
dρ

dT
dT = Ts dV + TV

ds

dT
dT − p dV. (25)

This is a total differential so equate coefficients of dT and dV :

ρ = Ts− p and V
dρ

dT
= TV

ds

dT
. (26)

The first equation gives the entropy density in terms of pressure:

s =
ρ + p

T
. (27)

The second equation can be divided by V to get:

dρ

dT
= T

ds

dT
. (28)

We can find the entropy density by integrating:

s(T ) =

∫ T

0

T−1 dρ(T ′)

dT ′
dT ′. (29)

(Recall s = 0 at T = 0 – 3rd law.)
Can integrate by parts, recalling that ρ = 0 at T = 0 in the absence of µ.

(Set u = T−1, v = ρ.)

s(T ) =
ρ(T ′)

T ′

∣

∣

∣

∣

T

0

+

∫ T

0

ρ(T ′)

T ′2
dT ′. (30)
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Now ρ/T → 0 as T → 0 since g⋆ stays finite:

ρ(T ′)

T ′

∣

∣

∣

∣

T

0

=
ρ

T
. (31)

Everything can now be expressed in terms of g⋆:

s(T ) =
π2

30
g⋆T

3 +
π2

30

∫ T

0

g⋆(T
′)T ′2dT ′. (32)

Easier to understand if we write in terms of y = T ′/T :

s(T ) =
π2

30
T 3

[

g⋆(T ) +

∫ 1

0

g⋆(yT )y2 dy

]

. (33)

The pressure can be found from Eq. (27):

p(T ) =
π2

30
T 4

∫ 1

0

g⋆(yT )y2 dy. (34)

And the equation of state is:

w(T ) =
p(T )

ρ(T )
=

∫ 1

0

g⋆(yT )

g⋆(T )
y2 dy. (35)

If g⋆ is a constant, which is true when all species are either massless or irrelevant
(m ≫ T ) then w = 1/3.

Cases of cosmological interest. Let’s consider the function g⋆ at early
times.

• T ∼few MeV: have photons gγ = 2, electrons/positrons (ge = 4), and
neutrinos (gν = 6 species, one helicity each). Latter two are fermions so

g⋆ = 2 +
7

8
(4) +

7

8
(6) =

43

4
= 10.75. (36)

• T ≈ 120 MeV, somewhat below QCD transition: now also have µ+µ−

pairs (gµ = 4), and pions (bosons, scalars so no spin: gπ = 3). If the
latter were massless, would have

g⋆ = 2 +
7

8
(4) +

7

8
(6) +

7

8
(4) + 3 =

69

4
= 17.25. (37)

(Not perfect since muons/pions have significant mass, and kaons not neg-
ligible. Also we’ve left out e.g. pion self-interactions.)

• At T ∼few hundred MeV, above QCD transiton: now the massless par-
ticles are photons (gγ = 2), e+e− (ge = 4), µ+µ− (gµ = 4), neutrinos
(gν = 6), quarks (3 flavors uds, 3 colors, 2 spin states, and anti-particles,
so gq = 36), and gluons (8 colors, 2 polarizations, so gg = 16).

g⋆ = 2 +
7

8
(4) +

7

8
(4) +

7

8
(6) +

7

8
(36) + 16 =

247

4
= 61.75. (38)
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• At T ∼ 1.5 GeV, add charm quark (gc = 12) and tau lepton (gτ = 4).
Then g⋆ = 75.75.

• At T ∼ 5 GeV, add bottom quark (gb = 12). Then g⋆ = 86.25.

• At T > 100 GeV, add W and Z (3 polarizations, 3 particles, gWZ = 9),
top gt = 12. Then g⋆ ≥ 106.75 for known particles. Beyond this will need
to add Higgs particle(s) and anything else the LHC finds!

Expansion history. The Universe is flat to a good approximation at early
times when the horizon is ≪ radius of curvature of the Univese. Alternative
way to put this is that in the Friedmann equation,

8

3
πGρ = H2 +

K

a2
, (39)

the left hand side ρ ∝ a−4 for radiation domination (approximately) so this
dominates over the curvature term (a−2). So we’ll drop the curvature. Using
equation for ρ in terms of g⋆: (ρ = π2g⋆T

4/30)

4

45
π3Gg⋆T

4 = H2. (40)

So the Hubble rate is

H =
2π3/2

3
√

5
G1/2g

1/2
⋆ T 2. (41)

This is one equation relating the expansion history to temperature, but we
need one more equation to close the system for a(t) and T (t) (2 unknowns, need
2 equations). Assuming the Univese remains in thermal equilibrium, which is
true prior to neutrino decoupling, the total entropy of the Univese remains fixed
(adiabatic expansion). Then entropy density declines as 1/volume:

s ∝ a−3. (42)

We can thus write
s =

se

a3
, (43)

where se is the extrapolated entropy density of the Universe, i.e. the entropy
density today if there were no new sources of entropy. Warning: the actual
entropy today is > se due to non-equilibrium processes, to be discussed later.
So we know:

se

a3
=

π2

30
T 3

[

g⋆(T ) +

∫ 1

0

g⋆(yT )y2 dy

]

. (44)

Let’s consider the case where g⋆ is constant over a reasonable range in tem-
perature, so the second integral is g⋆/3. Then

se

a3
=

2π2

45
g⋆T

3, (45)
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and

T =

(

45se

2π2g⋆

)1/3

a−1. (46)

From Eq. (41):

H =
2π3/2

3
√

5

(

90se

4π2g⋆

)2/3

G1/2g
1/2
⋆ a−2 = (180π)1/6G1/2g

−1/6
⋆ s2/3

e a−2. (47)

This is ȧ/a so we can re-arrange in terms of an integral for a:

a da = (180π)1/6G1/2g
−1/6
⋆ s2/3

e dt. (48)

Solve for a by integration:

a = 21/2(180π)1/12G1/4g
−1/12
⋆ s1/3

e t1/2. (49)

So the expansion history is the usual result (∝ t1/2), except that there’s a jump
every time g⋆ changes.

The temperature as a function of time is then

T = 2−1451/4π−3/4G−1/4g
−1/4
⋆ t−1/2. (50)

In less clumsy units (i.e. putting in factors of h̄ and c):

T = 1.56g
−1/4
⋆

√

1 s

t
MeV. (51)

2 Neutrino decoupling and e
+
e
− annihilation

We now want to understand how the relations in the previous section relate to
observables, and how we can normalize se.

Neutrino decoupling. Neutrinos are kept in equilibrium at early times by
reactions such as

νxν̄x ↔ e+e−. (x = e, µ, τ) (52)

They decouple at T ∼few MeV when g⋆ = 43/4, after which they redshift as
T ∝ 1/a (at least ignoring their masses). So let’s take the neutrino temperature
today, Tν0, and from Eq. (46):

se =
43π2

90
T 3

ν0. (53)

The scale factor as a function of temperature prior to neutrino decoupling is
then

a =

(

43

4g⋆

)1/3
Tν0

T
. (54)

e+e− annihilation. The electrons and positrons annihilate after neutrino
decoupling. (Actually they don’t completely annihilate since there are a few
more e− than e+, but this won’t concern us yet.) The characteristics of this
process are:
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• The principal reaction is e+e− ↔ γγ.

• The neutrinos (almost) don’t participate. (A few annihilations go to
e+e− → νν̄, affecting results at the ∼ 1% level.)

• The annihilation is fast. The time to reach equilibrium is ∼ α2/me ∼
10−18 s, much less than the age of the Univese t ∼few seconds.

Under these circumstances, the electron-positron-photon plasma adiabatically
transitions into a photon-only plasma, i.e. the entropies before and after are
the same. Since g⋆ for photons is 2 and for e+e−γ is 11/2, we have

11

2
T 3a3

∣

∣

∣

∣

beforeann

= 2T 3
γ a3

∣

∣

afterann
. (55)

Now since the neutrinos don’t participate, Tν ∝ 1/a so the temperature on
the left hand side applies to neutrinos even after annihilation. Thus, after
annihilation,

11

2
T 3

ν = 2T 3
γ , (56)

or

Tν =

(

4

11

)1/3

Tγ (afterannihilation). (57)

Since Tγ0 = 2.73 K today, the neutrino temperature is:

Tν0 = 1.95 K, (58)

and we can replace Eq. (54) with something in terms of the photon temperature:

a =

(

43

11g⋆

)1/3
Tγ0

T
(beforeannihilation). (59)

It’s common to define an “effective” g⋆,eff such that

ρ =
π2

30
g⋆,effT 4

γ , (60)

which is equal to g⋆ when all species are in equilibrium. This makes e.g. the
T (t) relation (Eq. 51) valid. To find g⋆,eff after e+e− annihilation, we write

ρ =
π2

30
g⋆,γT 4

γ +
π2

30
g⋆,νT 4

ν , (61)

so

g⋆,eff = g⋆,γ + g⋆,ν

(

Tν

Tγ

)4

= 2 +
21

4

(

4

11

)4/3

= 3.36. (62)

(Actually 3.38 when one takes into account O(α) QED corrections to plasma
equation of state and e+e− → νν̄ annihilations.)

Final note: all this assumes the neutrinos are massless, which is a good
approximation at high z. Not good today since the neutrino mass is large
compared to Tν0:
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• Tν0 = 1.95 K today is 1.7 × 10−4 eV in energy units.

• Solar neutrino mass splitting ∆m2
21 = (6 × 10−3 eV)2.

• Atmospheric neutrino mass splitting ∆m2
32 = (0.05 eV)2.

So at least two of the neutrino species are nonrelativistic today. We will discuss
the consequences later.
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