1. **Practice with magnitudes.** This problem deals with magnitudes in the visual ("V") waveband. This waveband is centered at a wavelength of \(\lambda = 5500\text{Å} \) (green) and has a width \(\Delta \lambda = 900\text{Å} \). The magnitude \(V \) in this band is related to the flux \(F \) by

\[
V = -\frac{5}{2} \log_{10} \left(\frac{F}{(3.631 \times 10^{-23}\text{W/m}^2)(\Delta \nu/\text{Hz})} \right),
\]

where \(F \) is the flux in the band, \(\Delta \nu \) is the range of frequencies within the band, and the denominator is a constant that depends on the version of the magnitude system used (this one is known as the "AB" system).

(a) Determine the central frequency of the \(V \) band and its width \(\Delta \nu \) in Hz.

(b) Suppose that a light bulb emits 2 W in the \(V \) band, and that the human eye can see objects as faint as 6th magnitude (\(V = 6 \)) against a black background. What is the maximum distance from which the human eye could see this light bulb?

(c) The absolute magnitude of an object \(M_V \) is its magnitude as seen from a distance of 10 parsecs. What is the absolute magnitude of the light bulb in part (b)?

(d) The Sun has an absolute magnitude of \(M_V = 5 \). If, with a small amateur telescope, you can see objects as faint as \(V = 10 \), from what distance could you see the Sun? What about a Type Ia supernova with absolute magnitude \(M_V = -18 \)?

2. **Luminosity distance-redshift relation.** Consider a universe containing only matter and cosmological constant, and possibly with spatial curvature.

(a) Taylor-expand the radial comoving distance \(\chi(z) \) to order \(z^2 \).

(b) Use this expansion to compute the luminosity distance \(D_L(z) \) to order \(z^2 \). Show that the first two coefficients depends only on \(H_0 \) and the combination

\[
q_0 = \frac{1}{2} \Omega_m - \Omega_\Lambda,
\]

known as the “deceleration parameter.”

3. **Peak angular diameter distance.** For the Einstein-de Sitter universe (flat, \(\Omega_m = 1 \)), find the redshift at which the angular diameter distance \(D_A \) is maximized. What is the value of \(D_A \)?

4. **Density of the CMB.** Suppose the Hubble constant today is \(H_0 = 70\text{ km/s/Mpc} \), and the cosmic microwave background is a blackbody at a
temperature of 2.73 Kelvin. What is the energy density of the CMB? What is its density parameter Ω_{cmb}?

5. [20%] Properties of relativistic plasma. Prove the following statements for a thermalized relativistic plasma containing noninteracting particles of arbitrary mass and no chemical potential:

 (a) The function $g_\nu(T)$ is nondecreasing.

 (b) The equation of state $w = p/\rho$ satisfies the inequality $0 \leq w \leq 1/3$.
