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1 The projected correlation function (Davis & Peebles, 1983)

1.1 Notation
One can measure the two-point correlation function in redshift space ξobs(rp, π) as a function of two variables, π,
the radial separation, and rp, the transverse separation. The observables are redshifts (due to the Hubble flow and
intrinsic velocities) and angular positions on the sky. For z � 1, we have (with c = 1) :

π = (z1 − z2)/H0 , rp ≡ (z1 + z2)/H0 × tan(θ12/2) (1)

The redshift separation between two galaxies is defined as

s ≡
(
z2
1 + z2

2 − 2z1z2 cos(θ12)
)1/2

/H0 (2)

It approximates the true separation r when peculiar velocities are negligible.
On small scales, where ∆z � 1 , θ12 � 1, we have s ≈

(
π2 + r2p

)1/2.
By small scales, we refer to ∼ 1− 10 Mpc.

1.2 Getting rid of the peculiar velocities
For a given true radial separation y, and total separation r = (r2p + y2)1/2, the measured radial separation π can be
decomposed as follows :

π = y − y h(r) + vpec/H0 . (3)

The first term is due to the Hubble expansion. The second term comes from bulk motions (h(r) = 0 if the cluster
expands with the general expansion on the scale r, h(r) = 1 if the cluster is Virialized, h(r) > 1 if the cluster is
collapsing). The third term comes from the random peculiar velocities in the cluster along the line of sight.
Given a probability distribution for the peculiar velocities f(vpec), the observed correlation function is then obtained
by the following convolution of the real space correlation function ξ(r) with f :

1 + ξobs(rp, π) =
∫ +∞

−∞
[1 + ξ(r)]H0f(vpec)dy , r = (r2p + y2)1/2 , vpec = H0(π − y + y h(r)) (4)

Note that typically, people use f(v) ∝ e−
√

2|v|/σ.
From this we obtain the projected correlation function :

wp(rp) ≡
∫ +∞

−∞
dπξobs(rp, π) =

∫ +∞

−∞
dy ξ

(
(r2p + y2)1/2

)
(5)

With this procedure, one therefore gets rid of the effect of the peculiar velocities.
This equation can be inverted to recover ξ(r) form the measured wp(rp) :

ξ(r) = − 1
π

∫ +∞

r

drpw′(rp)(r2p − r2)−1/2 (6)
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2 A more robust estimator (Padmanabhan et al., 2007)

2.1 Theory
In practise the integral in wp cannot be extended to infinity and needs to be cut at a cutoff scale πmax � rp. This
renders the estimator sensitive to poorly measured long wavelength modes. Padmanabhan et al. (2007) suggest a
new estimator ω, using high-pass filtering to remove the problematic long wavelength modes. They define

ω(rs) ≡ 2π
∫ rs

0

drp rp G(rp, rs)wp(rp) , wp(rp) ≡
∫ πmax

−πmax

dπξobs(rp, π) , (7)

where the filter G has a characteristic scale rs : G(rp, rs) = r−3
s g(rp/rs), and is “compensated” , i.e. s.t.∫ rs

0

drp rpG(rp, rs) = 0 . (8)

This ensures that the slowly varying modes are canceled out.
ω(rs) can also be related to the real space correlation function ξ(r). Note that for a power-law correlation function,
one obtains ω(rs) ∝ ξ(rs).

2.2 Filter G(rp, rs)

The family of filters G(rp, rs) = r−3
s g(rp/rs) is considered, with

g(x) = x2α(1− x2)β(c− x2) , (9)

where the constant c is chosen such that the integral of rpG(rp, rs) vanishes.
In practise, they adopt (α, β) = (2, 2).

2.3 Practical calculation
ξobs can be estimated via

ξobs(rp, π) =
DD(rp, π)
RR(rp, π)

− 1 (10)

Therefore, the estimator ω is given by

ω(rs) = 2π
∫ rs

0

drp rpG(rp, rs)
∫ πmax

−πmax

dπ
DD(rp, π)
RR(rp, π)

(11)

The constant disappears because of the insensitivity of G to constant changes.
For small bins ∆π , ∆rp, one can write

RR(rp, π) = 2πr2pnNΦ(rp, π)∆ ln rp∆π , (12)

where

Φ(rp, π) ≡
∫
S(x1)S(x1 + s)d3x1∫

S(x1)d3x1
, s ≡ rp + πeπ (13)

If one takes a binning small enough that DD is either 0 or 1, then one has

ω(rs) =
∑

i∈DD,rp,i<rs,|πi|<πmax

G(rp,i, rs)
nNΦ(rp,i, πi)

, (14)

i.e. the integral is transformed into a simple Riemann sum.

Note : the authors claim that this estimator is insensitive to the integral constraint. My understanding is that
the integral constraint is an uncertainty in the multiplicative factor in ξ. The high-pass filtering removes additive
constants in ξ. I am not quite sure how it works then.
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Figure 4. The fractional bias inω (bias = (ω−ωref )/ωref ) obtained from

the redshift space distribution of galaxies in the Millennium simulation for

different Zmax (in Mpc/h) – 20 (dotted), 40 (thick solid), 60 (dashed), and
80 (dot-dashed). The true value (ωref ) is assumed to be obtained by inte-

grating to a Zmax = 100Mpc/h; the figure shows that ω has converged

to better than 2% by Zmax = 40Mpc/h. The thin solid (red) line plots ω
obtained by integrating over the real space correlation function. The fluctu-

ations in ∆ω are consistent with measurement noise. For comparison, the

points show the analogous bias terms for wp, with triangles, circles, and

squares corresponding to Zmax = 40, 60, and 80Mpc/h respectively. For
a fair comparison with ω, we plot the bias in wp at Rs/2, which roughly
corresponds to the central scale probed byω. Note that the biases inwp are

significantly larger than those for ω.

still affected by the nonlinear redshift space distortions. Further-

more, we observe that our estimates of ω from the redshift space

correlation function agree with a direct integration of the isotropic,

real space correlation function.

In contrast with the above, the estimates ofwp are both biased

at the 5-10 % level and show a significantly slower convergence

to the true value. For instance, we find it necessary to integrate

to Zmax = 80Mpc/h to obtain biases < 5% (still significantly

larger than the biases in ω) for R < 10Mpc/h. This serves to
highlight the difficulties in measuring wp and the utility of ω as an
alternate measure of galaxy clustering. Although the precise values

of the bias will depend on the exact details of the galaxy sample,

the qualitative aspects of the above is generically true.

3 DISCUSSION

We present an alternative, ω(Rs), to the commonly used wp(R)
projected correlation function as a robust measure of the small

scale (∼ Mpc) galaxy correlation function. This is simply a fil-
tered version of wp(R), and can be straightforwardly determined
by a weighted sum of pairs in the data i.e. there is no reason to go

through an intermediate step of estimating wp(R). The features of
ω are :

(i) Improved Convergence (withZmax) to the real space cluster-

ing statistic : It is tempting to believe that one can model the error in

wp introduced by the Zmax truncation, simply by specifying ξ(r)

out to large scales (most often with the linear theory prediction). We

reiterate that this is not true - the error in wp is determined by the

redshift-space correlation function (Eq. 3), and requires a model of

redshift-space distortions on all scales. However, recall that it was

our uncertainty in redshift-space distortions that led us to wp in the

first place.

In contrast, ω converges to the real-space clustering statistic sig-
nificantly faster than wp for similar transverse scales, making it in-

sensitive to the precise value of Zmax used. Seen in this context, ω
completes the partial removal of redshift space information in wp,

as originally intended.

Furthermore, since ω converges significantly faster with Zmax,

it is possible to truncate the underlyingwp integral at a lower Zmax

than would have been naively possible, eliminating large scale

noise and possibly reducing the errors in any downstream quan-

tities derived from the data. The exact details of this are dependent

on the exact details of the galaxy sample; we limit ourselves here

to pointing out this possibility.

(ii) Well localized in real space : The real space filter,W (r), is
well localized in real space implying thatω(Rs) probes a relatively
narrow range of scales aroundRs/2.
(iii) Immune to the integral constraint : A corollary to the above

is that ω(Rs) is immune to errors in the mean density, and therefore
is insensitive to the integral constraint.

(iv) Insensitivity to small scales : An appropriate choice of

G(R) makes ω insensitive to measurements of clustering on very
small scales. This is important as it is these scales that are the most

sensitive to systematics in galaxy selection.

(v) Unbinned : ω(Rs) is a naturally unbinned quantity, remov-
ing any need for an arbitrary choice of binning.

Finally, we point out that there is a natural generalization of ω for
angular correlations.
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2.4 Testing the filter with the Millenium simulation
One of the main advantages of ω versus wp is that it converges faster when one increases πmax. It therefore completes
the partial removal of the peculiar velocity distorsions originally intended by wp. ω is converged to better than 2%
by πmax = 40h−1 Mpc. This can be seen their figure 4 reproduced above (where Zmax = πmax).
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