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1 The projected correlation function (Davis & Peebles, 1983)

1.1 Notation

One can measure the two-point correlation function in redshift space §°bs(rp,7r) as a function of two variables, 7,
the radial separation, and r,, the transverse separation. The observables are redshifts (due to the Hubble flow and
intrinsic velocities) and angular positions on the sky. For z < 1, we have (with ¢ =1) :

™ = (Zl 72’2)/H0 s rp = (2’1 +22)/H0 X tan(612/2) (1)
The redshift separation between two galaxies is defined as
— (.2 2 1/2
s = (2] + 23 — 22120 cos(612)) '~ /Ho (2)

It approximates the true separation » when peculiar velocities are negligible.
On small scales, where Az < 1, 615 < 1, we have s ~ (7% +17) 12,

By small scales, we refer to ~ 1 — 10 Mpc.

1.2 Getting rid of the peculiar velocities

For a given true radial separation y, and total separation r = (7"12, + y2)1/ 2. the measured radial separation 7 can be
decomposed as follows :

T=y—yh(r)+ UpeC/HO . (3)

The first term is due to the Hubble expansion. The second term comes from bulk motions (h(r) = 0 if the cluster
expands with the general expansion on the scale v, h(r) = 1 if the cluster is Virialized, h(r) > 1 if the cluster is
collapsing). The third term comes from the random peculiar velocities in the cluster along the line of sight.

Given a probability distribution for the peculiar velocities f(vpec), the observed correlation function is then obtained
by the following convolution of the real space correlation function £(r) with f :

+oo
1+ fObS(T’p,ﬂ') _ / []_ + 5(7')] HOf(Upec)dy , = (7’5 —+ y2)1/2 y  Upec = HO('/T —y+y h(T’)) (4)
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Note that typically, people use f(v) e~ V2l/o,
From this we obtain the projected correlation function :

+oo +oo
wr) = [ dmemm = [y (02 402)7) 5)
With this procedure, one therefore gets rid of the effect of the peculiar velocities.

This equation can be inverted to recover £(r) form the measured wy(r}) :

+oo
fn =2 [ )t - (6)
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2 A more robust estimator (Padmanabhan et al., 2007)

2.1 Theory

In practise the integral in w, cannot be extended to infinity and needs to be cut at a cutoff scale myax > 7. This
renders the estimator sensitive to poorly measured long wavelength modes. Padmanabhan et al. (2007) suggest a
new estimator w, using high-pass filtering to remove the problematic long wavelength modes. They define

Tmax

w(rs) =27 /Ors dry rp G(rp,ms)wp(ry) ,  wp(rp) = / d7r§°bs(7“p,7r) , (7)

Tmax

where the filter G has a characteristic scale 75 : G(rp,5) = r;3g(rp/7s), and is “compensated” , i.e. s.t.

/ ! dr, mp,G(rp,rs) =0 . (8)
0

This ensures that the slowly varying modes are canceled out.
w(rs) can also be related to the real space correlation function £(r). Note that for a power-law correlation function,
one obtains w(ry) o £(rs).

2.2 Filter G(rp,7s)
The family of filters G(r,,rs) = r;3g(r,/rs) is considered, with

g(z) = 2**(1 = 2*)?(c — %) , (9)

where the constant c is chosen such that the integral of r,G(rp, rs) vanishes.
In practise, they adopt (o, 8) = (2,2).

2.3 Practical calculation

£°P% can be estimated via
. DD(rp,7)
obs j )
&, m) RR(rp,m) (10)
Therefore, the estimator w is given by

Ts Tmax DD(,r. 771_)
W(T’s) = 2WA d?“p TpG('f'p,?"s)/ dﬂ-W:’ﬂ') (].1)

—Tmax

The constant disappears because of the insensitivity of G to constant changes.
For small bins Ar , Arp, one can write

RR(rp,m) = 27rr§ﬁN<I)(rp,ﬂ')Aln rpAT (12)

where

[ S(x1)S(x1 +s)d3x1
(I)(TpﬂT) = fS(Xl)d3X1 )

If one takes a binning small enough that DD is either 0 or 1, then one has

w(rs) = Z _Glrpisrs) 7 (14)

) nN®(r,;,m;
1€DD,rp,i <7s,|Ti|<Tmax ( L )

S=rp+ e, (13)

i.e. the integral is transformed into a simple Riemann sum.

Note : the authors claim that this estimator is insensitive to the integral constraint. My understanding is that
the integral constraint is an uncertainty in the multiplicative factor in £. The high-pass filtering removes additive
constants in £. T am not quite sure how it works then.
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Figure 4. The fractional bias in w (bias = (w — wyet ) /Wret) Obtained from
the redshift space distribution of galaxies in the Millennium simulation for
different Zmax (in Mpc/h) — 20 (dotted), 40 (thick solid), 60 (dashed), and
80 (dot-dashed). The true value (w,.. ) is assumed to be obtained by inte-
grating to a Zmax = 100Mpc/h; the figure shows that w has converged
to better than 2% by Zmax = 40Mpc/h. The thin solid (red) line plots w
obtained by integrating over the real space correlation function. The fluctu-
ations in Aw are consistent with measurement noise. For comparison, the
points show the analogous bias terms for wy, with triangles, circles, and
squares corresponding to Zmax = 40, 60, and 80Mpc/h respectively. For
a fair comparison with w, we plot the bias in w), at R, /2, which roughly
corresponds to the central scale probed by w. Note that the biases in wy, are
significantly larger than those for w.

2.4 Testing the filter with the Millenium simulation

One of the main advantages of w versus w), is that it converges faster when one increases mmayx. It therefore completes
the partial removal of the peculiar velocity distorsions originally intended by w,. w is converged to better than 2%
by Tmax = 40h~1 Mpc. This can be seen their figure 4 reproduced above (where Zyax = Tmax)-
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