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1. Introduction

Having examined the equations of hydrodynamics, we will now study one of
their most important applications: shocks, i.e. discontinuities in fluid flow. We
begin with a discussion of shocks in ideal gases, and then proceed to consider the
evolution of a supernova remnant. We conclude by discussing non-ideal behavior in
gases and its importance in controlling the behavior of real shocks in the ISM.
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2. Hydrodynamic Shocks

Here we consider the basic equations governing a shock, and in particular
what circumstances can result in their formation.

A. ENERGY-CONSERVING SHOCKS



We first consider a simple plane-parallel shock in an ideal gas. We will work
in the frame where the shock is stationary. Gas flows into the shock with density pj,
velocity vq, and temperature Ti. It flows out with density p2, velocity vz, and
temperature T>. All velocities are along the z-axis. Our job is to relate the “1”
quantities to the “2” quantities.

The basic approach is to use the conservation laws derived in the lecture on
hydrodynamics. The partial derivatives with respect to t, x, and y all vanish because
we are moving with the shock.

The first equation is that of mass conservation, which reads:

V- (ov)=0— L (ov) =0.
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(We drop the z subscript on the velocity.) This tells us very simply that:
PV = PoVs.

In other words, the mass flux into the shock equals the mass flux out.
The second equation is that of momentum conservation, which reads:
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We will assume here that no external forces are applied, so the first term vanishes.
We already know that the second term vanishes. Finally, pv is a constant (see
above), so we conclude that:

i(P +pv?)=0.
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Thus the momentum flux P+pv? is the same on both sides of the shock. Since the
pressure is pkT/p, we find that:
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[t is convenient here to eliminate the density by dividing by pv:
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The last equation we will need to close the system is the conservation of energy. We
use it in the form of requiring equal stagnation enthalpy on both sides of the shock,
i.e. ho,l = ho,z:
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These are two equations for two unknowns: T2 and v2. We can solve for v; if we use
the first equation to eliminate T>:
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This is a quadratic equation for v2. Re-arranging it gives the explicit form:
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This equation has two solutions. One solution must be v2=v1, since this
trivially satisfies the conservation laws. Using the fact that the sum of the two
solutions to a quadratic equation is —b/a (where ax?+bx+c=0), we conclude that the
nontrivial solution, which describes an actual discontinuity, is
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where cs1 is the adiabatic sound speed in the upstream gas. We define the
upstream Mach number by M1 =vi/cs1, so that:
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The implied density and temperature in the downstream gas are then:
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We have written down the equations for conservation of mass, momentum,
and energy. However, in order to be physical, whatever process occurs to the gas
within the shock must accord with the second law of thermodynamics. In particular,



the entropy of the gas increases if Tp~2/3 increases, and it decreases (unphysical) if
Tp~2/3 decreases. An actual computation shows that this requires M1>1. If M1=1,
then v2=v1 (repeated root of the quadratic); there is no actual discontinuity in this
case. Thus we only need to consider the case that M1>1.

[t is instructive to consider two limiting cases here. If M1=1+¢ is slightly
greater than 1, then
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The discontinuity is extremely small and propagates at (almost) the sound speed. It
can be thought of as a sound wave whose waveform is a step function.

The opposite case, which leads to the most dramatic results, is a strong
shock with M1>>1. In this case, we have v; = v1/4, p2=4p1, and T2 = (5/16)M1?T1.
The gas becomes much hotter, but is only compressed by a factor of 4. This is
because the kinetic energy of the incoming gas is randomized and converted to
pressure, which prevents further compression of the gas. Larger compression
factors are possible if the gas passes through multiple shocks, or can cool, thereby
removing the pressure support.

An alternative expression for the temperature after a strong shock is:
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where the numerical value is for ionized hydrogen (u=mu/2) and v7 is the shock
velocity in units of 100 km/s.

B. POST-SHOCK COOLING

The above analysis assumes that Q=0. This will be true in many cases at the
shock, but if the cooling time is short compared to the timescale for the shock to
cross an object then there are two important consequences. First, the postshock gas
can cool, so that T> may be far below that given by the above formula. Second, the
cooling radiation can have significant effects, e.g. by ionizing the upstream gas
before it reaches the shock. We consider the hydrodynamic effects here.

If we consider the “shock” to include not just the hydrodynamic discontinuity
but also the cooling zone behind it, then T2 should be determined by thermal
equilibrium considerations instead of by the energy equation. In this case, the
momentum equation



KT, KT,

Vi=—=+V,
v, uv,

can be solved directly for v2. In general, if the shock is highly supersonic in the
upstream medium, then the second term on the left-hand side dominates. There are
then two solutions for vz, a fast unphysical solution and a slow physical solution
where the first term dominates:
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The post-shock density and thermal pressure are:
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As one can see, the compression ratio pz/p1 can be very large for fast shocks. The
post-shock velocity in the shock frame vz becomes very small. Thus if one looks at
the problem in the rest frame of the upstream gas, the shock sweeps by, picking up
the gas and compressing it into a thin shell that moves along with the shock.

3. Supernova Remnants

[t is now time for us to take the tools we have developed and apply them to
the problem of large explosions and their effects on the ISM. The best-studied such
problem is that of a supernova remnant (SNR). This is the object generated when
a star explodes, dumping some amount of mass M+ outward at some initial velocity
vi. The total kinetic energy released by the supernova is

Typical values are M+ ~ 1034 g and v; ~ 10° cm/s.

A supernova remnant goes through several phases. In the first several weeks
of the expansion, the supernova ejecta undergoes free expansion - i.e. the gas
moves outward at constant velocity. The expansion of the gas causes cooling, but
the gas remains hot due to the decay of radioactive isotopes (e.g. >°Ni) produced in
the core of the progenitor star. The gas is opaque at this time, even to y-rays, and so
it captures the radioactive energy and glows like an incandescent light bulb; this is
the phase that we “see” as the supernova. As the remnant continues to expand, it
becomes optically thin and the >6Ni decays; it thus fades from view in the optical, but
it continues to emit y-rays from longer-lived isotopes.

Our main focus here will be on the interaction of the ejected gas with the ISM.
Gas present in the ISM must initially get displaced by the ejecta, which is typically



moving at ~10% km/s, i.e. highly supersonic. Thus there is a shock that propagates
outward into the ISM, called the blast wave, which accelerates ISM material away
from the supernova. Similarly, material ejected from the supernova must get
slowed down since it is transferring momentum to the ISM gas. Since the supernova
ejecta also becomes cold via expansion (in the sense that its sound speed is small
compared to the expansion velocity) this slowdown also occurs via a shock. This
shock, known as the reverse shock, propagates inward in the frame of the ejected
gas (but outward in the lab frame). Between the blast wave and the reverse shock
lies a contact discontinuity, which separates the shocked supernova ejecta and
shocked ISM. The contact discontinuity is not a shock: since the material on both
sides moves subsonically (both have already been shock-heated), the contact
discontinuity is a surface of pressure equilibrium between material of different
composition and entropy.

As the SNR continues to age, most of its material crosses the reverse shock.
Eventually, after it has swept up >M+ in mass, the blast wave is left to propagate
outward through the ISM, carrying the supernova’s energy but leaving the ejecta
behind. The blast wave is pushed forward by the thermal pressure of the ball of
shock-heated gas behind it. This is called the Sedov-Taylor phase (after the
physicists who solved the problem of an expanding blast wave in the Earth’s
atmosphere caused by the explosion of an atomic bomb). Finally, when the slower
blast wave and longer timescale allow the swept-up ISM to cool, the SNR enters a
snowplow phase, in which the results of §1IB apply and the swept-up gas forms a
thin shell. The snowplow may be subject to instabilities that give even an initially
spherical SNR a complex appearance.

We now consider each of these phases in turn.

A. EARLY EVOLUTION
A SNRis initially in free expansion. This phase lasts until the SNR has swept
up its own mass in material in the ISM. We may find the radius at which this
transition occurs. If we set the SNR’s radius to encompass mass M+, then we find:
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where no is the initial density of the ambient medium in nucleons per cm3, or
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The time required is R/v; or:
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Thus e.g. SN 1987A is still mostly in free expansion.
B. SEDOV-TAYLOR PHASE

Our next task is to consider the phase where the blast wave has swept up
more mass than was initially present in the ejecta. This phase can be treated in a
self-similar way: while the SNR grows with time, and hence has nontrivial
dependence on both r and ¢, the system at a later time is simply a scaled-up version
of the system at an earlier time.

Dimensional analysis suggests a particular arrangement of times and radii.
Once M- is negligible compared to the swept-up mass, and if the initial gas is
presumed cold (71— 0), the only parameters involved are the initial energy Esy and
the initial density po = muno. The only dimensionless function of these variables is:

r
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Therefore all flow variables must be functions of € times the appropriate
dimensionful quantities constructed out of Esy, po, and t. In particular, the density,
velocity, and sound speed are:
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The blast wave is at some radius & that we wish to solve for. The shock
velocity relative to the upstream undisturbed ISM (&>&;) is then:
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and from this we may obtain the boundary conditions at £=¢&s on the inside of the
blast wave. The density jumps by a factor of 4 for a strong shock, so:

D(E;) = 4.
The velocity in the shock frame is slowed to % of its original value, so the post-shock

velocity in the lab frame (which is the same as the frame of the undisturbed gas) is
34 of vy; thus:
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The sound speed of the post-shock gas for a strong shock is ¢?=(5/16)v1?, so we
find:

A2y
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The evolution inside the blast zone requires solving a system of PDEs (that
can be converted to ODEs by use of self-similarity). In principle, one could then
solve for & by requiring the total energy in the interior to be Esn. However, this is
too complicated to solve in class. We may obtain an approximate value by assuming
that all of the swept-up material moves at velocity v(&~) and has the sound speed
given by s(&). This gives a total energy of:
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(The first term in brackets is the kinetic energy and the second is the thermal
energy.) This reduces to:
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or & = 1.2. The implied blast wave radius is:
R=12EY0," 1 = 6B pe.
Its velocity is

=0.5E;{\fp(_)1/5 -3/5 ZOOOE;\ISSI (—)1/5 2/5 km/S

kyr

The temperature immediately behind the blast wave is:
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The more detailed treatment (see O&F Ch. 12) gives slightly smaller R, v4, and T2 (by
up to 40% for T2).

C. POST-SEDOV-TAYLOR PHASE
The Sedov-Taylor phase results in a shell of shocked interstellar gas whose

density is ~4 times the initial density (with a rarefaction in the center) and whose
temperature starts high but falls as t-/>. In the center of this is a bubble of hot,



shocked ejecta. The shocked ISM however contains a fraction of order unity of the
energy.

The cooling time of the shocked ISM decreases as it ages. Therefore, a time
will come at which the cooling time is equal to the SNR age. At this point, the hot,
low-density ejecta is still unable to cool, but the shocked ISM cools efficiently and is
thus compressed into a thin shell. The blast wave is then pushed forward by the
pressure of the internal hot bubble. The energy content of the bubble is described
by adiabatic evolution,
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However, we already learned from dimensional analysis that the radius of a bubble
is proportional to E1/5t2/5. The combination of these proportionalities gives:

R (R_2)1/5t2/5 - R« t2/7.

Thus the power-law exponent of the expansion switches from 2/5 to 2/7.

The hot bubble cools and its density drops as it expands, p ~ t¢/7 and T ~
t4/7. So long as the cooling function A(T) ~ T* with a<¥% (which occurs in practice
due to metal line cooling at intermediate temperatures), the ratio of age to cooling
time ~ tpA will increase and eventually the hot bubble will cool. Thereafter the SNR
enters the snowplow phase. The snowplow is distinguished by the inability to
transport momentum through the SNR because the internal thermal pressure is lost.
In this case, the expansion is governed by local momentum conservation as the
ejecta undergoes a completely inelastic collision with the surrounding ISM. The
momentum conservation rule tells us that:

P R’R = constant — Roct'*,
This completes the description of the idealized phases of SNR expansion.
D. INSTABILITIES

The contact discontinuity may undergo a Rayleigh-Taylor instability. This
is because the inward acceleration of the discontinuity (d?rq/dt?<0) implies that an
observer standing at the discontinuity sees a fictitious “gravitational” force outward.
This observer thus sees supernova ejecta sitting on top of (and being supported by)
shocked ISM material. If the shocked ejecta is denser than the shocked ISM, then
such a situation is unstable (much like trying to support a layer of mercury on top of
a bath full of water).

Additional deviations from spherical symmetry occur if the supernova ejecta
is clumpy or the SNR is expanding into a clumpy medium. In this case, the shocks
(reverse or forward) are temporarily stalled by the clumpy material, but propagate
freely into the underdense regions.



4. Advanced Shock Physics

We now consider several more advanced topics associated with shocks, at a
qualitative level.

A. RADIATION FROM SHOCKS

Radiation from shocks is a complex subject. One must treat both the
hydrodynamics, as well as the collisional ionization and cooling of the gas.
Furthermore, the cooling radiation contains extreme-UV/X-ray radiation that can
cause photoionization, including photoionization before shock passage since light
travels faster than shocks. Iterative computational models are required.

A few basic parameters can be obtained however. First is the cooling time of
the postshock gas. If the cooling function A~T-12, as is typical at T<107 K due to
metal cooling, then we can find the cooling time:

44
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where Z is the metallicity. We can thus see that young SNRs (e.g. SN 1987A) are
unlikely to have undergone any significant cooling of shocked material.

The emission lines from shocks are characterized by much higher
temperature to ionization energy ratios than photoionized H Il regions, since in
shocks the thermal energy is the source for the ionization energy. Therefore, shock-
heated gas should be expected to have much higher [0 111] 4363 /50074 ratios than
photoionized gas. Moreover, the ultraviolet allowed lines, e.g. C IV 1548,15514, can
be excited. A second feature is that the post-shock gas must recombine gradually,
leading to a much larger partially ionized zone (mixed H*/H?) than in regions
photoionized by stars. This dramatically enhances the emission in lines such as [O I]
63004, since 0° can only exist in H zones but requires some ionization so that it can
be excited by electron impact.

B. BALMER-DOMINATED SHOCKS

The above discussion presumes that one sees the cooling zone behind the
shock. In some cases, however, the shock is not old enough to have a fully
developed cooling zone. In this case, netural H will stream into the shock region,
resulting in a so-called Balmer-dominated shock. This is characterized by very
strong Balmer lines relative to metal lines. The Balmer lines have both a broad and
narrow component.
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The shock occurs first in the ion-electron plasma, which rapidly randomizes
its energy through plasma interactions.! The neutrals are affected only by collisions,
and propagate into the post-shock plasma where they are ionized.

The narrow component of the H lines is produced by neutral H atoms that
cross the shock. They subsequently find themselves in a hot environment, and are
collisionally excited and emit line radiation. This component is narrow because
large impact parameter collisions can effectively excite the electron into a higher
energy level, but tend to be less efficient at deflecting the protons; so this
component retains the initial velocity of the incoming gas. The broad component, in
contrast, comes from hot ions that undergo charge exchange:

H*+H > H + H*.

The exchange process involves only the hopping of an electron, and thus enables the
production of a population of “hot” H atoms (which are eventually collisionally
ionized).

The Balmer-dominated shock requires the existence of at least a partially
neutral medium into which the shock propagates (in this case the supernova ejecta,
which recombined when it was young, small, and dense). As more material is shock-
heated and the SNR is bathed in its own thermal EUV/X-ray radiation, an ionization
front can be launched into the ejecta. This seems likely to happen to SN 1987A
within the next several decades, and the Balmer-dominated shock will be destroyed,
replaced by a shock propagating into fully ionized material.

C. MAGNETIC FIELDS

Shocks can also propagate in magnetized gas. While the general analysis is
quite complicated, we will consider here the special case of a shock propagating in
the z direction with a magnetic field purely in the x direction. We further assume
the medium to be magnetic pressure dominated, i.e. the gas pressure will be
neglected. This is likely to be appropriate if the post-shock gas can cool, thereby
removing its thermal pressure.

The basic equations are as follows. For the mass conservation, the basic
equation is unchanged:

PV = PoVs.

For the momentum conservation, we no longer have the pressure, but we do have a
magnetic force F:

1 The idea is that the flow of two plasmas into each other generates instabilities that
tap into the supply of kinetic energy. The electrons and ions then scatter off of the
structures in the electric and magnetic fields generated by these instabilities,
thereby randomizing their velocities. This process generally does not lead to
complete thermalization, a subject of active research.
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F+ i(pﬁ) =0.
dz

We do recall however that the magnetic force is determined by the current density
and magnetic field,

(We note that since B is discontinuous at the shock, there is a §-function in the
current density along the shock.) Therefore, the momentum conservation equation
tells us that pv? + B2/8m is conserved across the shock:

2 B22
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One further equation is required in order to solve for p2, vz, and Bz. This is
the equation for flux freezing: since magnetic flux through a region is conserved, if
the gas is compressed by some factor in the z-direction then the magnetic field must
be increased by the same factor. Thus:
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If we graph the right-hand side, we see that it is a function that decreases initially,

has a minimum at
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and then increases. We thus see that it will have at most two solutions for v2. In fact
one solution is vz = vi. The other solution is at v2<v; (compressing) if vi>va1 and at
v2>v1 (unphysical) otherwise. Thus a shock only propagates at velocities exceeding
the Alfvén velocity (the magnetic analogue of the sound speed).

It is convenient to define the Alfvén Mach number Mj = v/va. Then if we
write the ratio of velocities r = vz /v, the velocity equation is written as

1 1
M§,1+5=Mill’+p.
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The ratio r then has the solution:

1+4/1+8M2,

CAM?,

In the limit of very fast shocks, unlike the case of thermal support where r 2 %,
magnetically supported shocks can achieve arbitrarily small compression ratio.
This is a consequence of the fact that we have allowed the shock’s energy to be
radiated away.

D. C-SHOCKS

The above types of shocks contain actual discontinuities where the
hydrodynamic equations break down (flow variables change over the scale of a
mean free path, or faster in the case of shocks in plasmas) and are known as J-
shocks. Atlow velocities in magnetized low-ionization gas, one can have another
type of shock known as a C-shock. The C-shock provides an explanation for how H;
observed in pre-main-sequence star outflows can survive shocks with velocities of
several tens of km/s without being collisionally dissociated.

The C-shock relies on the fact that in a plasma, the electrons and ions are tied
to the magnetic field lines (they spiral around them) whereas the neutrals (atoms
and molecules) are oblivious to the field. On scales large compared to the mean free
path, neutrals are carried with the magnetic field by collisions (or charge exchange)
with the ions. On scales smaller than the mean free path, however, the neutrals
simply travel on straight lines at constant velocity while the ions and electrons (tied
to the field on much smaller scales, the cyclotron radii) form a “fluid.” The latter is
of extremely low density in weakly ionized gas, and hence it has a very large Alfvén
velocity.

What happens to a shock propagating at low velocity in this medium? From a
perspective of the bulk hydrodynamics, the gas can cool and so it is probably
describable by the equations of §IVC. However, if one actually looks at the shock
structure, one would expect the shock to occur in the ions first, as they actually form
a fluid. However, the ions cannot shock if the shock velocity is less than the Alfvén
velocity of the ions (i.e. using only the ion rather than the total density in the
denominator). Therefore, the ions carry a precursor wave ahead of the shock.
Behind the shock, the ions are pushed upstream by the magnetic field gradient
(remember, the ion-electron plasma carries the current that supports the field!);
they then collisionally transfer their momentum to the neutrals, gradually
decelerating them until the velocity v is reached. The gradual deceleration ensures
that the neutrals are never heated to temperatures of the order of ~pvi2/k.
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