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1. Introduction

Thus far we have considered several of the major phases of the ISM and their
chemical and thermal state. However, we have not yet considered the motion of the
ISM. On the largest scales, the gas in the Milky Way's disk is orbiting on roughly
circular orbits in the Galactic potential, and it undergoes some radial motion due to
the passage of spiral arms. On smaller scales, the disk has a thickness determined
by its sources of pressure that try to puff up the disk, balanced by the force of
gravity that acts to compress it. On even smaller scales, the ISM undergoes velocity
flows associated with gravity, supernova explosions, and responses to variations in
pressure due to heating. Finally, the smallest-scale velocity flows are due to
turbulence: large-scale velocity flows tend to be unstable and cascade to smaller
scales (a familiar phenomenon from everyday life).

A new aspect of ISM dynamics is the role of the magnetic field. The ISM -
even its “neutral” component - contains free charges and hence is an electric
conductor. This means that motions in a magnetized ISM lead to large-scale
currents, which then are affected by JxB forces. The dynamics of conducting
magnetized fluids is called magnetohydrodynamics (MHD) and plays a key role in
the study of the ISM (and of other systems, e.g. accretion disks and jets, stellar and
planetary magnetism, and laboratory and space plasmas).

We will consider only nonrelativistic hydrodynamics and MHD, as these are
relevant to the ISM, but in other applications (e.g. near black holes) their relativistic
analogues are important.

References:
B Osterbrock & Ferland, Ch. 6 (first few sections)



B MHD waves are described in some advanced E&M textbooks (e.g. Jackson §7.7)
or any book on plasma physics.

2. The Basic Equations
A. HYDRODYNAMICS

The basic equations of hydrodynamics are the conservation of mass,
momentum, and energy; and the basic variables are the density p, velocity v, and
temperature T. The conservation of mass is the simplest: the flux of mass is pv
(units: g cm~2 s71), so the mass density must change in accordance with:
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The partial derivative indicates that the derivative is to be taken at constant position
x. This equation is often written in an alternative form, using the convective
derivative:

For any scalar quantity @, an observer sitting at a fixed point x measures a time
derivative 0®/dt, whereas an observer moving with the flow of the fluid measures
d®/dt. The convective derivative of the density is:
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Our second basic equation is the conservation of momentum. The flux of
momentum [units: (g cms™1) cm=2 s71 = g cm~1 s72; same units as energy density or
pressure] T is actually a tensor quantity: that is, there is a flux of the i component of
momentum (i=x,y,z) in the j direction. It can thus be represented by a 3x3 matrix,
and we call it the stress tensor. An additional feature of momentum is that unlike
mass, it can be added by external forces: if there is a force density (dyne cm-3), e.g.
the pg force due to gravity, then the momentum density contains an additional time
derivative due to this external force. Since the momentum density is pv;, we have:
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The momentum flux contains at least two components: that due to the
internal pressure of the gas, and that due to its motion. The motion contributes a
momentum flux of the momentum density pv; times the velocity at which it is



transported v;, or pviv;. The internal pressure for an ideal gas only transports x
momentum in the x direction, etc. due to the spherical symmetry of the Maxwellian
distribution. This transport rate is P§;. Therefore, we have a stress tensor:

T,=pvy, + P(Slj.

In practice, there may be additional contributions to the stress-energy due to
viscosity - the phenomenon that a gas in an inhomogeneous flow (i.e. where v
depends on X) is not quite describable by a Maxwellian distribution. For flows
where the velocity varies on scales long compared to the mean free path, we may
usually treat viscosity as contributing a small contribution to Tj that depends on the
gradient of the velocity. Symmetry considerations, combined with the fact that Tj;
must be symmetric (a general law of physics, but in the case of a gas this is easily
derivable by considering that an individual molecule with velocity u has a
contribution proportional to u;u;) restrict this contribution to the form:
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Here k is called the bulk viscosity coefficient and 1 the shear viscosity
coefficient. They are generally both positive for stable media.
The equation for the velocity is then:
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A case of common interest is where the viscosity is negligible, in which case
the above equation simplifies to:

g(pv) =F-v-V(pv)-pvV-v-VP.

t

Moving the veV term to the left-hand side gives a convective derivative:
d
—(pv)=F-pvV:-v-VP.
dt

Using the product rule, and the convective derivative formula for p, we can simplify
this to:

dv
—=F-VP.
pdt



The above equations are called the Navier-Stokes equations and describe
gas flow in many situations (except shocks).

In order to close the above equations, one needs one more equation: the
conservation of energy. The energy density can be represented as the sum of kinetic
energy density pv?/2, and internal energy pe, where e is the internal energy per unit
mass and depends on the equation of state. For ideal monatomic gases (our main
concern), e = 3kT/2pn (where p is the mean molecular weight). We also need the
energy flux, which has several parts. One is simple advection of the internal energy,
i.e. pev. A second is the application of pressure to a moving surface, -Pv. A third is
thermal conduction, -kmV T, where kuw is the thermal conductivity. Finally, we
need the net sources of energy, which are the net heating Q (erg cm=3 s-1), including
viscous heating; and the work done by external forces Fev. We then have:

%(%Pvz + pe) = —V'(%Pvzv‘* pev — PV‘KmVT) +O+F-v.

We will focus here on the idealized case where thermal conduction is negligible.
Writing this in terms of the convective derivative gives:

i(lpvz+pe)=—V-(lpv2v+pev—Pv)+v-V(lpv2+pe)+Q+F-v
dr\2 2 2
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We may now extract p from the left-hand side using the product rule, and cancel the
Vev term on the right:

p%(%v2+e)=v-(Pv)+Q+F-v.

Finally, we explicitly take the convective derivative of v2/2:
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which allows us to simplify the energy equation to:

p%=PV-v+Q.
dt

If we replace Vev with —(dp/dt)/p, this becomes
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[t is convenient to define the specific enthalpy h by h = e + P/p. For an ideal
monatomic gas, h = 5kT/2p. We may then write:

dh de d(1) dP dP
p—=p—+pP—|—|+—=0+—.
dt dt dt\p) dt dt

It may also be valuable to write the above equations in terms of the
stagnation enthalpy ho = h + v2/2:
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The stagnation enthalpy is useful because in time-steady situations and in the
absence of dissipation, external forces, and sources of energy, it is conserved along a
trajectory.! We will use this fact to our advantage in the study of shocks.?

The above equations can only be closed in general by an equation of state,
which is a function that relates the enthalpy h, the density p, the temperature T, and
the pressure P (and, in the presence of dissipation, the transport coefficients k, 1,
and kwm) to each other such that only two variables (e.g. p and T) are required to
describe all of these. The monatomic ideal gas equation of state:

is applicable for most of our purposes. Furthermore, we require a formula for Q if
the gas is being followed over a timescale comparable to the heating or cooling time
(from photoionization or photoelectric heating, or radiative cooling).

B. THE HEATING TERM

LIf the external force is conservative, F = -pV®, then ho + ® is conserved along a
trajectory.

2 This equation is still valid at shocks because it simply derives from conservation of
energy. The flow velocity is formally not defined within the shock, so the equation
for d(v?/2)/dt is not valid; this is why we cannot use the h equation in a shock.



There are two very important limits in the above discussion. One is the limit
of no significant heating or cooling, in which case we may set Q = 0. The energy
equation then says p dh/dt = dP/dt. In this case, with the exception of behavior at
shocks (where one cannot ignore sharp changes in the velocity field in the above
derivation!), we have:

5koT dInT _ ka(dlnp .\ dlnT)
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This implies that:

dinT 2dlnp
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Thus, in this case we find that the temperature and pressure of the gas obey T =
Kp?/3. The coefficient of proportionality is generally different for different parcels of
gas, but in many problems (e.g. initially homogeneous media with some Ty and po),
the coefficient of proportionality can be taken as fixed. The pressure, which appears
in the momentum equation, is then:
5/3
P= Po(ﬁ) .

Po

This will be recognized as the standard adiabatic relation. For small perturbations
in the pressure, one may then write:

SP=clop, cl= Sk

3u’

where cs is called the adiabatic sound speed (so far just a namel!).

The opposite situation occurs in a medium where the thermal equilibrium
timescale is short compared to the timescale associated with the flow. In this case, if
the medium is thermally stable, Q adjusts itself so that the medium stays on the
equilibrium curve in the (p,T) plane. The thermally stable curve is usually close to T
= constant (since cooling is exponentially sensitive to T), so it is often a good
approximation to set T = constant. In this case, we have for small perturbations

OoP = cfép, cf =—,
u

where this ¢s is now the isothermal sound speed.

C. MAGNETOHYDRODYNAMICS



We are now ready to include magnetic fields in the above analysis. The force
per unit volume on a parcel of fluid is now F =] x B / ¢. Using Ampeére’s law, and
working in the nonrelativistic limit where the displacement current is small, we may
then write:

F=1JxB=L(VxB)xB.
c 4m

The momentum equation then reads:

dv 1
—=—(VxB)xB-VP.
pdt 4J'L'( )

It is of conceptual importance that this force can be written as the divergence of a
stress tensor. Vector identities show that

F—l

= ——V(32)+lB-VB.
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Then using the fact that B is divergenceless, we may write
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Here T(®) can be thought of as a magnetic stress tensor (in fact, in the general theory
of electrodynamics it is). The above calculation suggests that in directions along the
magnetic field lines, the stress is negative (i.e. field lines pull like tensioned strings),
whereas in the perpendicular-to-field directions the stress is positive (field lines
push against each other). Many qualitative results of MHD can be conceptualized
with this picture.

In order to close the system of equations, we need a formula for the behavior
of B. This is given by Ohm’s law, which relates the current density J to the electric
field:

o J=E+ VXB,
c

where o is the conductivity. The term on the right-hand side involving the magnetic
field takes note of the fact that a moving observer sees a slightly different electric
field than a stationary observer. Taking the curl of the above equation gives:
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The divergencelessness of B eliminates one term on the right hand side. Also,
Ampeére’s law allows us to simplify the left-hand side to:

C Vx(@'VxB)=—c' P L [B-Vv-B(V-v)-v-VB].
4 ot

If 0 = constant (which is not generally true, but is often a reasonable
approximation, especially in situations where we may set -1 = 0), then we find:

2
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V x(V xB).

Defining the magnetic diffusivity x = c? / 4no, we simplify this to:

%=B-VV—B(V-V)+XVZB.

Conceptually, the first term on the right-hand side reflects the shearing of magnetic
field lines by velocity gradients; the second term represents their compression or
expansion; and the third represents diffusion. Typical diffusion coefficients for an
ionized plasma are ~ 106 cm?/s, so a field line will diffuse << 1 pc in the age of the
Universe. Thus in many situations it is valid to neglect the diffusion (we will see
exceptions later).

If x can be neglected, then it can be shown that the magnetic flux through a
loop that moves with the fluid is conserved. We may see this explicitly by using
Stokes’s theorem for the flux:

lp=fB-dn=gSA-dx.
S
Then:
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where the last term takes account of the fact that the differential distance dx is
changing as the loop deforms. The last term may be written using the product rule
as:



ﬂ= [%'dx+(v-VA)-dx+dx-V(v-A)—(dx-VA)-v].
dr | or

The term involving V(v*A) is a total derivative and integrates to zero, so we may
drop it. The second and fourth terms may be combined by vector identities to give:

ﬂ= [%~dx+(VxA)-(vxdx)}.
dr | or

The curl of A is B, and cyclic permutation of the triple product then gives:

ﬂ= [%-dx+(va)-dx}.
dr | or

We may now use Stokes’s theorem to go back to integrals over the surface S:

av_ [@+Vx(va)]-dﬁ

dr |t
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Our equation for the evolution of B shows that the integrand is zero. Thus we see
that magnetic field lines are trapped to the plasma: if the fluid moves, so does the
field and vice versa. This is of course unsurprising for an idealized perfect
conductor.

3. Simple Solutions

We are now ready to consider some simple solutions to the equations of
hydrodynamics and MHD. We will focus on two examples of direct relevance to the
ISM: the propagation of waves, and the plane-parallel disk (a model for the gaseous
disk of our Galaxy). A third example - shocks — will be covered in the next lecture.

A. WAVES IN HYDRODYNAMICS

Our first consideration is waves in hydrodynamics. We will assume a
uniform background medium and only consider linear perturbations. We will also
assume for simplicity that one of the two limiting cases (adiabatic or isothermal)
applies to the waves. The background density is taken to be po, the appropriate
sound speed (either adiabatic or isothermal) is c¢s, and the unperturbed medium is at
rest, v=0. This is a simple example, but it serves as a warm-up for what comes next.

The basic setup for a wave problem is to write the perturbed quantities as
complex exponentials,
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Then a spatial gradient acting on a perturbation undergoes the replacement V — ik
and the time derivative is d/dt — —iw. Since the background is stationary,
convective derivatives can to linear order be replaced with partial derivatives. In
more general analyses where the background is moving, this replacement would not
necessarily be valid.

The density and velocity equations then become

—iwdp =-ik - p,v,
—iwp,V = —ikSP = —ike 5p.
The first equation can be used to eliminate the density perturbation,
wép = pk-v.
Then the second equation reduces to:
w’v=cl(k- VK,

which has two types of solutions. If K||v, then we have a compressional wave (6p#0)
with dispersion relation w=csk. This is the conventional acoustic wave. If kLv, then
we find a zero mode, i.e. a non-oscillatory mode with w=0 and §p=0. This mode
corresponds to extremely slow divergence-free motions. It represents the degrees
of freedom of incompressible hydrodynamics, and if excited its ultimate fate is that
the convective derivative terms eventually become important and result in
complicated (often turbulent) motions. We will discuss these later when we
describe interstellar turbulence.

B. WAVES IN MAGNETOHYDRODYNAMICS
We now consider a somewhat more complicated problem: we suppose that
the above fluid is conducting and lives in a uniform background magnetic field Bo.
The equations of motion will be used to discover the possible wave motions in MHD.
The density equation is of course not modified:

—iwdp =-ik - p,v.

The velocity equation now contains not just the pressure force, but an additional
term. We note that V x B = ik x 6B since the background field is uniform; then:

—iwp,V = i(ik x OB) x B, — ikc’p.
4
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Finally, we need the magnetic field equation,
—-iwéB =i(B, - k)v-iB,(k- V).
The first and last equations can be used to eliminate §p and 6B. This gives:

k-v

! {ik x[-(B, K)v+B,(k-v)]}xB, —ikcp,

—iwp,V = —_—
4w w

In order to simplify this equation further, we define a new velocity, called the
Alfvén velocity va:
BO

VA:M.

This can be thought of as a vector since the background field selects a pure
direction. Then the equation for the velocity becomes:

0’v={kx[(v, K)v-v,(k-V)]}xv, +ck(k"V).
This equation simplifies using vector identities:
0’ v=(v, k)’v-(k- VK- v,)v, -k v )V VvOk+vik - Vk+ckk:v).

To study the solutions, we will place the background field in the z-direction, and k in
the xz-plane without loss of generality. Then one would guess based on symmetry
principles that the waves with motion in the y-direction would decouple from those
with motion in the xz-plane. This is indeed the case. If we take v to be in the y-
direction, the above equation is trivial in the x and z components; the y component
is:

2 2
wv, =(v,-k)v.

We see that this wave has a dispersion relation w=va|k;|. The waves thus have a
group velocity of +vj, and thus represent excitations that propagate up and down
the field lines at fixed velocity. Such waves are called Alfvén waves and have no
hydrodynamic analogue. They are always noncompressional. One can see from the
0B equation that 8B is perpendicular to By, i.e. the magnetic field does not change its
strength, only its direction.

We now consider the wave modes with velocities in the xz-plane. We write 0
as the angle between k and Bo. Then our equation has two nontrivial components in
the x and z directions:

11



w2(vx) i (vi +clsin’6 ¢! sinBcosH)(vx)

v, c2sinfcos®  clcos’H \v.

The wave solutions correspond to the eigenvectors of the matrix and their velocities
are associated with the eigenvalues. The eigenvalue problem reduces to:

o' =i +cHk’w® +viclk cos’0=0.
The solutions are:

k2
w’ = 7[\/1 +clx \/(vi +c2)’ —4vicicos® 9].

The upper and lower solutions are called the fast magnetosonic wave and
slow magnetosonic wave, respectively. Note that the dispersion relation is
invariant if we swap va and c;, although the eigenvector (direction of v) is changed.

In the limit of a weak magnetic field va << ¢;5, we can see that the fast mode
becomes an acoustic wave: the dispersion relation is w=csk. The slow mode in this
limit has the dispersion relation w=va|k|, i.e. the same as for the Alfvén wave. In this
limit, both the Alfvén wave and the slow wave are noncompressional motions of the
fluid that twist the magnetic field lines; magnetic tension then provides the
restoring force for the waves (in some ways, they are just like waves on a 1D string -
c.f. Phys 12a).

In the limit of a strong magnetic field va >> cs, the fast wave propagates at
velocity va - but its dispersion relation is isotropic, indicating that it can propagate
in all directions. Its restoring force is magnetic pressure. The Alfvén wave also
propagates at velocity va but along field lines. It corresponds, as usual, to a
noncompressional twisting of the field lines. Finally, the slow wave becomes a wave
that propagates along field lines at speed c;. In this case, the magnetic field (which
dominates the pressure) remains fixed, while the gas tied to this fixed field is free
only to slide up and down the field lines (1D motion), and thus propagate acoustic
waves that are constrained by the magnetic field.

The general behavior of magnetosonic waves when va/cs ~ 1 is left as an
exercise. [t appears that most of the diffuse ISM phases are in this regime (with
va/cs slightly greater than unity).

We will need to use Alfvén waves to understand (among other issues) the
behavior of turbulent velocity fields in the ISM.

C. PLANE-PARALLEL DISK

Our second example of an MHD solution is a plane-parallel disk, which one
may take as a first approximation (dramatically oversimplified!) to the disk of our
Galaxy. We suppose there is a gravitational potential ®(z) (generated by the stars
and gas in the Galactic disk), and that the gas in this disk is stationary with a
magnetic field B(z) and density p(z). The mass conservation equation is then trivial.
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The momentum conservation equation for a stationary fluid in a gravitational field
says that:

0=-pV®D - iV(B2) + LB -VB-VP,
87 4

or

I, B, _ 1 9B

0=—8B,—=—8, ,
A * dz 4m 0z
0B
0=_p@_ii(32)+LB7 z _ﬁ_
dz 8w oz dg ~ dz Oz

Thus we see that there are two possible types of solution: one where B,#0, and By
and By must be constants, and the other where B,=0 and By and B, are allowed to
vary. Both have been written down, but since observations of synchrotron
polarization show magnetic field structures aligned along the spiral arms of
galaxies, the latter is probably closer to physically relevant (although neither is very
good; we will improve on this later). In this case, we have:

2
i@ _Id(B  p|
oz oz\ 8w

Thus we see that the gas obeys the usual hydrostatic equilibrium equation, but with
a magnetic component to the pressure. Magnetic pressure plays a significant role in
the vertical support of the Milky Way’s disk.

We have sidestepped the issue here of whether the aforementioned disk is
stable. In many cases, particularly where magnetic support dominates, it is not. The
analysis of MHD solutions for stability is a complicated subject (involving linear
perturbation analyses with inhomogeneous backgrounds), and a simple example
will appear on the homework.

D. TIME-AVERAGED EQUATIONS FOR DISKS

Of course, the real disk is undergoing turbulent motions and has a
complicated magnetic field structure. There would seem to be no way to modify the
above beautiful result to take all of this into account. Nevertheless, using the
equation of momentum conservation, a useful statistical statement can be made
about the dynamics of the disk by taking the average of the momentum conservation
equation. It should be noted that this procedure does not represent a complete
description of the disk, but it relies on far fewer approximations than the previous
section. In particular, turbulent solutions that result from the long-term evolution
of unstable initial conditions can be described.
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So now we go ahead and average the momentum conservation equation
(assuming the gravitational potential, dominated by the stars, to be fixed):

o< (L)) 22 3+, + ()]

i S ox;
This equation has 3 components, but only the z component contains interesting
information:

Bj+Bj-B§>

87

Thus at a statistical level the mean density on the left hand side (which represents
the gravitational attraction of all matter toward the midplane) must balance the
three sources of pressure support that tend to expand the disk: turbulent pressure
(involving the RMS of the vertical motions); gas pressure (which so far in this class
has been thermal pressure but could also in general include cosmic ray pressure,
i.e. the pressure associated with nonthermal particles); and magnetic pressure.
The last could in principle be negative, but in the real Galactic disk the magnetic
field appears to be mainly aligned in the plane of the disk (“horizontal”) and hence
provides positive support. One of our objectives is to understand how much each
source of pressure contributes and develop a quantitative momentum budget for
the Galactic disk.
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