AY 102 HW #1

Due: Wednesday, January 19, 2011

#1. Lyman- α decay. [12 points]

- (a) Look up in your quantum mechanics textbook the wave functions for the 1s and $2p_{\rm z}$ orbitals of hydrogen.
- (b) Calculate the matrix element $<1s|x|2p_z>$.
- (c) Use this to obtain the $2p_z \rightarrow 1s$ decay rate in hydrogen.

#2. Alternative derivation of the *J***-values for 0** II. [12 points]

- (a) Calculate the number of electrons k in the 2p subshell in the lowest configuration of O II.
- (b) There are six 2p spin-orbitals (i.e. possible values of m_l and m_s for a single electron). Explicitly write down the $\binom{6}{k}$ ways to put k electrons in these spin-orbitals and calculate the values of M_J , the projection of total angular momentum onto the z-axis, for each one. Make a histogram of the M_J values.
- (c) Using the fact that each energy level with total angular momentum J has 2J+1 quantum states with M_J ranging from -J...J, determine using your answer to part (b) which values of J exist in the lowest configuration of O II, and how many energy levels exist for each J. Compare this to the energy level diagram from the notes.

#3. Ionization energies of helium-like ions. [16 points]

In this problem, we will investigate the ionization energies of ions with two electrons and atomic number Z. You may, for these purposes, take the orbital part of the ground-state wave function to be $\Psi_{\text{orb}}(\mathbf{x}_1,\mathbf{x}_2) = \psi_{\text{ls}}(\mathbf{x}_1)\psi_{\text{ls}}(\mathbf{x}_2)$, where ψ_{1s} is the wave function of a 1-electron (hydrogen-like) ion with atomic number Z.

- (a) What are the spin wave function and term symbol?
- (b) Compute the approximate energy by taking the expectation value of the Hamiltonian, $\langle \Psi_{\rm orb} | H | \Psi_{\rm orb} \rangle$. You may leave your answer in terms of the integral $I = \int \psi_{\rm ls}^*(\mathbf{x}_1) \psi_{\rm ls}^*(\mathbf{x}_2) \frac{e^2}{r_{\rm l2}} \psi_{\rm ls}(\mathbf{x}_1) \psi_{\rm ls}(\mathbf{x}_2) d^3\mathbf{x}_1 d^3\mathbf{x}_2. \ [\textit{Hint}: The Hamiltonian is given in the lecture notes; all of the terms involving a single electron can be solved using the fact that <math>\psi_{\rm 1s}$ is an eigenfunction of the operator $H_1 = -(\hbar^2/2m_e)\nabla_1^2 Ze^2/r_1.$]
- (c) Without any detailed calculations, explain why I is equal to some fixed positive numeric constant times Ze^2/a_0 .
- (d) Compute the energy difference between the 2-electron and 1-electron ions. [For this part, you may use the fact that the constant in (c) turns out to be \%.]
- (e) Evaluate numerically the expression in (d) for the ionization energies of the sequence He ... O⁶⁺ and compare them to tabulated values.