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1. Introduction

Our investigations so far have focused on radiation absorbed and emitted by
gas. However, the radiation we see from Galactic and extragalactic objects is
absorbed by dust grains in the ISM, altering observed colors and line ratios, and in
some cases obscuring objects entirely in the optical part of the spectrum.

Additionally, dust re-emits this energy in the infrared part of the spectrum.
Infrared emission from dust can be a powerful diagnostic of the nature of
interstellar dust, as well as telling us about sources of radiation that are completely
obscured in the optical.

Our study of interstellar dust begins with the analysis of absorption,
emission, and scattering by spherical particles. We will then discuss grain
composition and the dielectric constant of typical materials. Advanced topics, such
as grain asphericity, alignment, and polarization, emission from nanometer-size
grains, and microwave emission, will be discussed in a subsequent lecture.

The major references here are:
§2: Your favorite E&M textbook
§3: Tielens, Ch. 5

and the classic paper:
Draine & Lee, Ap] 285, 89 (1984)

2. Optics of Spherical Grains



We consider processes involving grains of radius a and dielectric constant
€(w). The dielectric constant is related to the electric susceptibility x(w) by:

gw)=1+4my(w);

in turn, the polarization (electric dipole moment per unit volume) of a material is
given by P=xE. The electric susceptibility is in general a complex function of
frequency and is zero in vacuum.

A. ABSORPTION & SCATTERING: LONG-WAVELENGTH LIMIT

We first consider the case of wavelengths A>>a. In this case, an incident
electromagnetic wave corresponds to an externally applied electric field that is
spatially uniform (over the size of the grain) but time-varying,
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The polarization at position x within the grain is simply xE(x), where E(x) is
determined by integrating the electric field from a collection of electric dipoles:

Ex)=E_ -V f P(x)d’x'.
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We are fortunate that the electric field introduced by a uniform polarization is:

E, (x)=

‘Pdx' =V f(PV)—d*' (P-V )V, f—d*'

The last integral is the potential from a uniformly charged sphere with charge
density p=1. Its gradient is (negative) the electric field of such a sphere, which by
Gauss’s law is -4mx/3 inside the sphere. Thus we see that the electric field from a
sphere of uniform polarization is

E, (x)= —%J‘EP.

We see that the dielectric sphere in a uniform external field has a solution for
uniform polarization P where:

P = XE = X(Eext - %'TEP),
or
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The overall dipole moment of the sphere is (4/3)ma3P, so the emitted (i.e. scattered)
power is given by the dipole formula,
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If we recall that the incident flux F is c|Eex|2/81, we conclude that the cross section
is
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At long wavelengths, we see that the scattering cross section decreases rapidly as
~1/A%* (aside from possible issues with the dielectric constant) - this is the same
physics as the Rayleigh blue-sky law.

We may also consider absorption. The power dissipation (in erg/cm3/s) is
given by the work done by the electric field on the dipoles:
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Integrating this over the sphere, we find an absorbed power
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The absorption cross section is then
127’ Ime
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At long wavelengths, A>>a, we therefore see that the absorption will dominate
unless the medium is lossless (€ nearly real).

B. ABSORPTION & SCATTERING: SHORT-WAVELENGTH LIMIT

For materials with modest dielectric constants (i.e. x of order unity), one may
estimate the large-angle scattering of radiation using geometric optics. Radiation
falling within the geometric cross section o=ma? is refracted or reflected at the grain
surface, and is either scattered or absorbed depending on whether the optical depth
through the grain (~ka Im ¢€) is small or large.

An additional contribution to the cross section occurs due to diffractive
effects. The presence of an obstruction causes small-angle scattering of radiation
with a power equal to that that would have passed through the obstruction. This



radiation is deflected through a typical angle 6~A/a, and the corresponding cross
section is ma?. Thus the total cross section is twice the geometrical value:

o, =2ma’.

At A<<a the diffracted radiation can result in a “halo” appearing around a
bright source, an effect observed in X-rays. As A increases, the halo grows in size,
until at A~a the diffraction pattern and geometrically refracted/reflected pattern
merge into the dipole scattering pattern described previously.

C. THERMAL EMISSION

The radiation absorbed by a grain is re-emitted in the infrared. We are now
in a position to understand the spectrum of emitted radiation.

We use the principle of detailed balance (again!) to compare the emission of
a dust grain to absorption. If the grain has temperature Tgy, then in a blackbody of
temperature Tq it must absorb an amount of radiation per unit frequency:

ar,. S8mhv’ 1
dv = o2 ehv/de_IGabs(V)'

For practical cases the grains will have sizes up to ~0.5 pm and the radiation will
emerge at wavelengths of many microns (due to the exponential factor); so we are
in the long-wavelength limit and may write:
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The luminosity of the grain per unit frequency, Ly, must be equal to this:

1927’ ha’v* 1 Ime
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The grain will reach an equilibrium temperature when its total luminosity L = [ L, dv
is equal to the amount of radiation absorbed.

3. Grain Properties

Next we consider the composition of dust grains and their likely dielectric
constants. Our attention will then turn to their thermal balance.

A. MATERIALS



Clearly dust grains must be made primarily out of the abundant elements.
The most abundant 10 elements (for solar composition) by number are:!

H 1

He 0.085

0 0.00049
C 0.00027
Ne 0.000085
N 0.000068
Mg  0.000040
Si 0.000032
Fe 0.000032
S 0.000013

While the true ISM abundances are not solar, the pattern is representative. The
most abundant elements (H and He) do not by themselves form solids under
reasonable conditions, although H may be incorporated into molecules if combined
with heavy elements. Of the metals, by far the most abundant are C and 0. Ne does
not participate in chemistry, and we will return to N later, but the subsequent
metals (Mg, Si, Fe) do form solid minerals with oxygen (the silicates).

Clearly many materials can be made out of these elements. The main cases
that we will consider here, since they are observed in the diffuse ISM phases, are:

B Carbonaceous material: Ordinary carbon is found in the form of graphite,
which consists of honeycomb-like sheets of carbon atoms bonded to three
others in a hexagonal pattern. The sheets are held together by van der Waals
forces. Carbonaceous material may also consist largely of small honeycomb-
like units but with impurities, defects, etc. rather than pure graphite sheets
(soot!). The smallest carbonaceous grains are the polycyclic aromatic
hydrocarbons (PAHs). As their name suggests, these are really molecules.
The PAHs are characterized by honeycomblike? carbon skeletons with
hydrogen atoms bonded around the exterior.

B Silicate minerals: These are minerals consisting of Si atoms bonded in a
tetrahedral pattern to 4 O atoms. There are many ways to connect these
tetrahedral structures to each other. For example, the tetrahedral structures
may share oxygen atoms, forming networks (0:Si = 2:1), long chains (0:Si =
3:1), or individual units (0O:Si = 4:1). In the latter cases, the dangling oxygen

1 Asplund, Grevesse, Sauval, & Scott, ARA&A 47:481 (2009)

2 In a planar hydrocarbon, the 2p, orbitals of the carbons can mix with each other,
such that the energy eigenstates are complicated linear combinations of these
orbitals. The hydrocarbon is considered aromatic when the electrons occupying
these levels can arrange themselves to give a lower energy (and hence greater
stability) than one would expect by counting double bonds. Such structures often,
but not always, involve hexagons.



atoms carry a single negative charge, and must be balanced by the
incorporation of positive ions (e.g. Mg?*, Fe?+), leading to olivines
(stoichiometry MgiFe2-xSi04) or pyroxenes (stoichiometry Mg.Fe1-,Si03).
The silicate minerals may either be crystalline or amorphous; while
crystalline silicates are observed in circumstellar material, the silicate
content of ISM dust appears to be amorphous (narrow crystalline mid-IR
features not observed).

In special environments, one may consider other grain materials: diamond,
Sj, SiC, Fe, iron oxides, etc., and in some cases there is evidence for these. In cold,
dense environments, IR absorption spectroscopy also shows that ice mantles
(including H20) have condensed onto grain surfaces.

B. DIELECTRIC CONSTANTS: GENERAL PROPERTIES

The dielectric constant of a material is a function of frequency. It consists of
areal part (conservative) and an imaginary part (dissipative). Both are needed to
compute optical properties. However, it is a remarkable fact that the functions Re
X(w) and Im x(w) encode precisely the same information, thereby allowing us to
infer all optical properties of a material from its absorption Im x(w). This is because
of causality: electric polarization P is caused by the electric field E, and the cause

must precede the effect. In particular, if Ex is a §-function at time t=0, then the
polarization at any other time is:

P()= [ x(w)e ™ do.
Since P is real, we may write this as:
P(1)= f_o; [Re y(w)coswt + Im y(w)sinwt]dw.

This has to be zero for t<0. Therefore,

f_iReX(w)Coswtdw = —f_ilmx(w')sinw‘ tdw' for t<0.
For t>0, we may write the same equation but with —t:

f_iReX(w)Coswtdw = f_ilmx(w')sinw'tdw' for t>0.
In either case,

f_iRex(w)cosa)tda) =sgn tf_ilmx(w')sinw‘ tdow'.



Now we note that since P and E are real, the susceptibility function satisfies
X(-w)=x*(w), so Re x is even and Im x is odd. Therefore, the left-hand side is the
Fourier transform of Re x. We may thus use the inverse transform,

Re x(w) = wa sgn t[fw Imy(w')sinw' tda)']coswtdt,
2w Y -
To go further, we introduce 620 as an infintesimal parameter,
Re x(w) = wa e sgn t[foc Imy(w'")sinw' tdw']coswtdl,
2m Y- -

so that we are justified in performing the integral over t:

W'+ w'-w

f e"sgntsinw't coswtdt = —+ —.
- (w'+w) " +0° (W'-w) +0

This gives (using the oddness of Im ¥ to combine the two terms)

Rex(w)——f Imy(w ')ﬁdw'.

If we take the limit as 020, the integral becomes a principal part:

Re y(w) =— PPf_ IH;X(Z)))CZ '

where PP indicates that one is to exclude a region |w’-w|<¢ from the integration
region, and take the limit as ¢=>0. An analogous relation (swapping Re with Im and
introducing a - sign) allows one to go from Re x to Im .

It is possible to express the same equation in terms of only the positive
frequencies using the oddness of Im y:

Rex(a))——PPf a)Im—)((az))
-
Imx(a))=—2—PP wRGZX—(wz)da)'
T 0w -w

These are called the Kramers-Kronig relations. With the help of the
Kramers-Kronig relations, we need only specify Im y(w).

An interesting law can be obtained for the behavior of Im x(w). At very high
frequencies (hv >> binding energy of inner-shell electrons) where the electrons are
essentially free particles, the position of an electron as a function of time is x =
eE/me.w?, so the susceptibility must become:
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Matching this to the Kramers-Kronig relation implies
= mmn, e’
f o'Imy(w)dw'= —"—,
0 2m

e

This is a “sum rule” that tells us that the total absorption at all frequencies must be
related to the number of electrons.

C. DIELECTRIC CONSTANTS: SPECIFIC MATERIALS
Usually, the absorption can be described by several kinds of features:

B FElectronic excitations: Absorption occurs at frequencies corresponding to the
energy differences between electronic energy levels. A common example is
that in graphite sheets, electrons can be excited from the occupied ™ band
(where the wave function changes phase by <90° between neighboring C
atoms) to the m* band (where the wave function changes phase by >90°). A
pileup of such transitions occurs at ~2200 A, although in graphite the highest
energy levels of the  band and the lowest of the * band overlap, so that
there is absorption even in the optical (hence the black color).

B Vibrational modes: The mid-infrared contains the typical vibration
frequencies associated with the stretching and bending of atomic bonds.
Silicates in particular have resonances at 10 um (Si-O stretch) and 18 pm
(0O-Si-0 bend). PAHs have a variety of modes associated with the carbon
skeleton and the hydrogen atoms; for single molecules, however, the notion
of a “dielectric constant” is not quite appropriate.

B Conductors: Free electrons in conductors (graphite, metals) imply a
polarization that is the integral of the applied electric field, or alternatively
Im x(w) =2 1/(pw) where p is the resistivity (Ohm’s law).

Some specific functions can be found on Bruce Draine’s website: (see link from class
page)

http://www.astro.princeton.edu/~draine /dust/dust.diel.html

The physics is discussed in Draine & Lee, Ap] 285, 89 (1984) although there have
been some updates since then.
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