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We employ a parallel tempered Markov Chain Monte Carlo (MCMC) approach to detect and
characterize the signals from cosmic string cusps in simulated data from the third round of Mock
LISA Data Challenges (MLDCs).

I. INTRODUCTION

Round three of the Mock LISA Data Challenge in-
cludes training and blind data sets with simulated grav-
itational wave signals from cosmic string cusps [1]. We
present here our search technique, our results from the
training data, and our results from the blind data set.

II. MCMC SEARCH TECHNIQUES

Our search is based on a Markov Chain Monte Carlo
method [2, 3]. We employed several techniques to en-
sure rapid exploration of the full parameter space: local
coordinate transformations to uncouple the parameters;
moves that exploit symmetries of the likelihood surface
to encourage jumps between local maxima; and parallel
tempering to encourage wide exploration of the poste-
rior [4]. Details of our search technique can be found in
Ref. [5].

The cusp gravitational wave signal [6–9] was param-
eterized by ~x → {lnA, t∗, ln fmax, θ, φ, ψ}, and the pri-
ors were taken to be uniform in these quantities, save
for θ, where a uniform sky distributions is given by
Π(θ) = 1

2
sin(θ).

A. Detector Symmetry Based Proposals

Any burst signal with duration less than a day pro-
duces a response in the LISA detector that can be well
approximated by a stationary antenna. Such signals will
suffer from a degeneracy such that sky locations related
by a reflection in the plane of the detector with produce
an identical response. There are additional symmetries
in the low frequency limit that result from 120◦ rotations
in the plane of the detector. These symmetries are bro-
ken at higher frequencies by the slightly different arrival
times of the gravitational waves across the LISA array.
Rotations thus produce two sets of secondary maxima.
We employ proposal distributions that propose jumps to
these symmetry locations as part of our MCMC search.

B. Parallel Tempering

Global exploration of the parameter space is enhanced
by creating a set of parallel chains with likelihood sur-

faces at different “Temperatures” T such that

Li(~x) = L(~x)1/Ti . (1)

Chains that explore surfaces with T ≫ 1 tend to take
bigger steps since the contrast between maxima and min-
ima is decreased, and this encourages wider exploration
of the parameter space [10, 11]. The chains can exchange
parameters according to the Hastings ratio

HPT =
La(~xb)Lb(~xa)

La(~xa)Lb(~xb)
, (2)

for chains with temperature Ta and Tb and parameters
~xa and ~xb, respectively.

We implement the parallel tempering method for NC

chains with the T values given by

Ti = (∆T )i−1 (3)

where

∆T = (Tmax)
1

NC−1 . (4)

Only the T = 1 chain samples the true PDF and is
used to produce the parameter histograms. We typically
used 20 chains and a maximum heat of T ∼ 100.

III. THE MOCK LISA DATA CHALLENGE

Challenge 3.4 is comprised of a month long data set
(221 samples with 1 second sampling) with cosmic string
cusp waveforms injected with a Poisson event rate of five
events per month. This is the first MLDC data set with
non-symmetric instrument noise. The cusp burst sources
can be found using a symmetric approximation for the
noise (leading to a small systematic bias in the recovered
parameters), or the source parameters and the individual
noise levels can be fitted simultaneously in the search.

The time of arrival at the solar system barycenter (t∗)
is highly correlated with the sky location of the source.
A search for t∗ leads to poor determination of the time
of arrival of the burst due to the inherently poor reso-
lution of the sky location. A better choice of variable
is the time of arrival at the guiding center of the LISA
constellation (t△). The detector time of arrival is not as
correlated with the sky location parameters, resulting in
better conditioned Fisher Information Matrices to drive
the local jumps of the Markov Chain.
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Source SNR1 t∗ (sec) SNR2 t∗ (sec)

3.4.0 53.54 386501.8 53.99 386502.6

3.4.1 21.46 1889293 21.27 1889293

3.4.2 31.07 1864208

3.4.3 73.87 2059895 76.58 2059896

3.4.4 14.07 1498159 14.12 1498164

TABLE I: The triggers produced by a search of the MLDC 3.4
training data. All but one of the sources was detected in both
passes through the data (one signal happened to straddle a
data segment boundary). The time of the trigger is listed,
along with the recovered value for SNR.

A. Training Data Results

The triggers found by our search in the training data
are shown in Table I and the MAP parameters for each
source are shown in Table II.

The training data was analyzed without reference to
the answer key so as to mimic the steps that will be
taken to analyze the blind challenge data. The paral-
lel tempering technique takes care of both detection and
characterization, so the analysis does not have to be be
broken up into distinct stages. On the other hand, run-
ning the search on the full ∼ 2 × 106 seconds of data to
find signals with duration ∼ 103 seconds is not very effi-
cient, so we adopted the strategy of dividing the full data
set into 64 segments of length 32,768 seconds. Time do-
main filters were used to limit spectral leakage, and the
finite response of these filters meant that signals in the
first and last ∼ 10% of each segment had to be discarded.
To ensure full coverage, a second pass was performed us-
ing segments offset from the first by 16, 384 seconds.

The first stage of the analysis was to search each data
segment using NC = 12 chains with ∆T = 1.55 and
N = 10, 000 iterations. A simple SNR threshold was used
to decide if a source had been found in the data segment.
Triggers with SNR = (s|h)1/2 > 8 were recorded for fur-
ther analysis (the loudest noise triggers had SNR < 6).
If a trigger was found the signal was regressed from the
data and the search repeated (in other words the search
is sequential rather than simultaneous).

The initial search did not fit for instrument noise levels,
but found all five signals in the training data and recov-
ered the source parameters to good accuracy (Table I).
Since the segmented data is searched twice, we expect
to find each source twice, but one trigger happened to
fall near the boundary between segments and was thus
discarded. The source was found on the offset pass.

We evaluated our results by calculating the ρ statistic,
and the correlation between the recovered template and
the data (the latter could only be checked for the train-
ing data as the answer key for the blind data is not yet
available).

In terms of the usual noise weighted inner product:

(a|b) =
2

Tobs

∑

A,E,T

∑

f

a∗β(f)bβ(f) + aβ(f)b∗β(f)

S
β
n(f)

(5)

where Tobs is the observation time and Sn(f) is the one-
sided noise spectral density in each channel, the rho
statistic is defined:

ρ =
(s|h)

√

(h|h)
, (6)

where s is the data and h is entry template. The corre-
lation is defined as

Correlation =
(h|s)

√

(h|h)(s|s)
. (7)

We only use data from withing a window of 1024 seconds
around the burst when computing correlations. When
noise is present the correlation is not a very useful mea-
sure of performance. The “theoretical” SNR of the entry
template is

SNR = (h|h)1/2 . (8)

A good solution will have ρ ∼ SNR.

Source θ (rad) φ (rad) ψ (rad) A t∗ (sec) fmax

3.4.0 -0.2485 5.589 0.3997 1.986e-21 386843.98 2.37e-3

MAP 3.301e-2 5.277 0.3464 3.647e-21 386729.38 2.27e-3

3.4.1 -1.181 4.790 5.205 1.073e-21 1889234.54 1.157

MAP 4.232e-2 4.797 1.959 1.440e-21 1889147.75 4.06e-2

3.4.2 -0.9337 0.6772 3.981 6.604e-22 1864491.28 0.4642

MAP 0.4327 3.635 2.468 5.998e-22 1863759.94 2.57e-2

3.4.3 0.2391 1.090 3.541 2.647e-21 2060273.07 1.15e-2

MAP -0.1731 2.240 2.968 1.079e-20 2059769.79 1.05e-2

3.4.4 -1.030 1.156 1.099 3.420e-22 1498329.95 2.277

MAP -0.6732 2.703 2.794 5.815e-22 1497869.97 2.54e-2

TABLE II: The MLDC training data sources with the injected
parameters and the recovered MAP parameters found with
our search.

The results in Table III show that the templates con-
structed with the MAP parameters from our search have
a high correlation with the noise-free training data. The
lisatools software was used to produce the templates used
to make this comparison. As expected, the value of the ρ
statistic is very close to the theoretical SNR, and we use
this as an indication of how well our technique has deter-
mined the source parameters in the blind search, when
there is no noise-free data available.

B. Blind Data Results

The same methods employed in the search for cosmic
string signals in the training MLDC data were used to
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MLDC 3.4.0 SNR ρ Correlation

Noise-Free 41.58 40.25 0.999883

With Noise 41.58 40.03 0.872481

MLDC 3.4.1 SNR ρ Correlation

Noise-Free 21.08 20.93 0.998167

With Noise 21.08 23.37 0.627839

MLDC 3.4.2 SNR ρ Correlation

Noise-Free 29.26 29.15 0.999483

With Noise 29.26 32.44 0.763786

MLDC 3.4.3 SNR ρ Correlation

Noise-Free 74.74 74.91 0.999897

With Noise 74.74 73.45 0.948604

MLDC 3.4.4 SNR ρ Correlation

Noise-Free 13.08 12.78 0.996606

With Noise 13.08 11.79 0.648446

TABLE III: The MLDC training data best fit parameters re-
covered from the search produce waveforms that can be com-
pared with the noise-free MLDC data sets and the full MLDC
data sets to determine how well each source was recovered.

find the signals in the blind data. Three sources were
found in the month long data set. The triggers are listed
in Table IV and the recovered MAP parameters are listed
in Table V. The evaluation of the recovered template can
be found in Table VI with comparable ρ and SNR values
indicating a good match to the data.

SNR1 t∗ (sec) SNR2 t∗ (sec)

Source 0 40.461692 599202.3 40.764385 599242.1

Source 1 33.094462 1072929 33.071948 1072929

Source 2 43.264396 1603018

TABLE IV: The triggers produced by a search of the MLDC
3.4 blind data with the time of each trigger and the recovered
SNR. One source was found on only one pass through the
data since it straddled the segment boundary.

θ (rad) φ (rad) ψ (rad) A t∗ (sec) fmax

Source 0 0.3094 3.926 4.552 9.912e-22 599287.64 Nyquist

Source 1 -0.3233 3.934 4.957 2.763e-21 1072739.28 1.056e-3

Source 2 0.2325 5.899 5.919 1.512e-21 1602943.85 Nyquist

TABLE V: The recovered MAP parameters for the MLDC
blind search.

MLDC source 0 SNR ρ Correlation

With Noise 40.34 42.09 0.748116

MLDC source 1 SNR ρ Correlation

With Noise 20.16 19.62 0.815867

MLDC source 2 SNR ρ Correlation

With Noise 42.71 42.80 0.679256

TABLE VI: The MLDC blind data best fit parameters recov-
ered from the search produce waveforms that can be compared
with the data to test how well each source was recovered.

IV. CONCLUSION

A matched filter analysis using parallel tempered
Markov Chain Monte Carlo techniques can both detect
and characterize the gravitational wave signals from cos-
mic string cusps in simulated LISA data as demonstrated
by the Mock LISA Data Challenge results.
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