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1. Supernova Shock Revival from Neutrino Heating

(a) Estimate the energy that is required to photodissociate 0.8 M� of Fe into alpha par-
ticles and neutrons. Compare this energy to the bounce shock energy and comment
on the fate of the shock.

First find what particles 56Fe dissociates into: 56Fe = 26p + 30n = 13α + 4n

Then find the energy needed to dissociate a single 56Fe nucleus:

Q = (13mα) + 4mn −m(56Fe)c2

= (56− 55.85)mpc
2

= 2.25× 10−4 erg/nucleus

Now calculate the total energy needed to photodissociate 0.8 M� of 56Fe:

Ephot = Q(0.8 M�)

= (2.25× 10−4 erg/����nucleus)(0.8 ��M� )(2× 1033
�g/�

�M� )(55.85× 1.67× 10−24
�g/����nucleus)−1

This yields Ephot = 3.9× 1051 erg . The photodissociation energy is larger than the energy of

the bounce Ebounce = 1051 erg, so the shock will not survive with its initial energy.

(b) In the proto-neutron star (with an initial radius 2 × 106 cm), the mean free path of
neutrinos is lν = 30 cm. Estimate the diffusion time for neutrinos to escape from
the proto-neutron star and hence estimate the neutrino luminosity during the initial
neutron-star cooling phase.

The diffusion time is given by tdiff = R2

lc , where R = 2 × 106 cm is the radius and l = 30 cm is

the mean free path. Plugging in numbers yields tdiff = 4.44 s .

The neutrino luminosity Lν is generated by the neutrinos radiating the proto-neutron star’s

gravitational binding energy Ebind ∼ GM2
core

R . Then Lν ∼ Ebind/tdiff. Plugging in numbers yields

Lν = 1.5× 1052 erg .

(c) Assuming that 10% of the neutrino luminosity is absorbed by the infalling outer
core, estimate how long it takes to absorb enough neutrino energy to reverse the
infall of the 0.8 M� outer core and drive a successful supernova explosion with a
typical explosion energy of 1051 erg. Assume the outer core has initial energy per
unit mass ε = −GMFe/RFe. Compare this time to the dynamical (free-fall) timescale
of the proto-neutron star.

Assuming 10% of the neutrino luminosity is absorbed by the core, the total energy absorbed is
0.1Lνt:

0.1Lνt = Einfall + ESN. (1)
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Here, ESN = 1051 erg is the energy of the supernova and Einfall is the infall energy of the outer
core. The total infall energy is given by

Einfall = εMouter core

=
GMFe

RFe
(0.8 M�)

= 1.07× 1051 erg

Solving equation (1) for the time, we find

t =
Einfall + ESN

0.1Lν

=
(1.07 + 1)× 1051 erg

0.1(1.5× 1052 erg/s)

which yields t = 1.4 s .

Compare this to the dynamical (free-fall) time of tdyn =
√

R3

GM = 2.9× 10−4 s . It takes many

dynamical timescales to drive the explosion!

2. Protostar

(a) Find the average density and central temperature (as a function of mass) of an
accreting protostar whose initial radius is given by the expression

R

R�
=

43.2

1− 0.2X

M

M�

if its structure is approximated by a n = 1.5 polytrope with hydrogen mass fraction
X = 0.7 and helium fraction Y = 0.3.

The average density is given by ρ̄ = 3
4π

M
R3 . We know that the radius is given by R = 43.2

1−0.2X
M
M�

R�.

Substituting X = 0.7 and the solar values, we find that R = (1.76× 10−21 cm/g)M . The average
density is then given by

ρ̄ =
3

4π

M

(1.76× 10−21 cm/g)3M3

ρ̄ = (1.1× 10−5 g/cm
3
)

(
M

M�

)−2

The central temperature is given by Tc = C µM
R where C = 4.347× 10−16 (cf. Set 4 or HKT Eq.

7.41). One of the easiest ways to compute mean molecular weight is using 1
µ = 2X + 3

4Y + 1
2Z,

which yields µ = 0.62. Plugging in numbers (fortunately M appears in both the numerator and

denominator and cancels out), we find Tc = 1.52× 105 K .

(b) Suppose the protostar maintains a polytropic structure until its collapse is halted
when the central temperature reaches Tcrit required for hydrogen burning. Show
that the greater the mass of the star, the smaller the density at the point where Tcrit
is reached:

ρcrit = 1.52
1

M2

(
kBTcrit
µmHG

)3

There are several ways to do this, but I recommend starting with the polytrope equations given
in HKT (Eqs. 7.37-7.42). Perhaps the most straightforward way to do this is to consider the
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equation for central temperature (HKT Eq. 7.41, noting that Avogadro’s number NA is roughly
the reciprocal of mp):

Tcrit =
1

(n+ 1)(−ξθ′)ξ1
Gµmp

kB

M

R

Plug in the expression for R as a function of ρ̄ = ρcrit, then solve for ρcrit:

Tcrit =
1

(n+ 1)(−ξθ′)ξ1
Gµmp

kB
M

(
3M

4πρcrit

)
ρcrit =

3

4πM2

(
kBTcrit(n+ 1)(−ξθ′)ξ1

Gµmp

)3

Plugging in numbers (from HKT Table 7.1), we find that ρcrit = 1.52 1
M2

(
kBTcrit

µmpG

)3

, as expected.

(c) Noting the criterion for electron degeneracy, estimate the critical mass below which
collapse is halted by electron degeneracy, not by hydrogen burning. After dropping
factors of order unity, show that this mass is related to the Chandrasekhar limit,
MCh, by the approximate relation

Mcrit

MCh
∼
(
µe
µ

)3/2(
kBTcrit
mec2

)3/4

Evaluate this mass for Tcrit = 5× 106 K and MCh = 1.4 M�.

The criterion for electron degeneracy is that (degeneracy energy) > (thermal energy):

p2
F

2me
> kBT

1

2me

(
3h2ne

8π

)2/3

> kBT

Note that electron number density ne = ρcrit
µemp

, where ρcrit is the critical density from the previous

portion. Plugging these in and solving for Mcrit, we find:

Mcrit =

(
kBTcrit

2me

)3/4(
(1.52)3

8πµe

)1/2(
h

µG

)3/2

m−2
p

Dividing this by the Chandrasekhar mass MCh =
(
hc

2πG

)3/2 1
(µemp)

2
, we find

Mcrit

MCh
=

(
1

2

)3/4(
(1.52)3

8π

)1/2

(2π)−3/2µ
3/2
e µ−3/2(kBTcrit)

3/4

(mec2)3/4

Fortunately, all those numbers at the beginning are of order unity, so we can drop them:

Mcrit

MCh
∼
(
µe
µ

)3/2(
kBTcrit

mec2

)3/4

(2)

For our object, µ = 0.62 and µe is the number of baryons per electron. This is given by

µe =
1∑ # electrons

baryon × (mass fraction)
=

1

X + 1
2Y + 1

2Z
= 1.18

Plugging in this value of µ along with the given values of Tcrit and MCh into Equation (2), we

find that Mcrit ∼ 0.018 M� , which is approximately 20 Jupiter masses. Our object is a brown

dwarf!
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3. Binary Stars

(a) Show that the minimum orbital period of the binary is

Pmin ' 5π

(
15

8π

)1/2

(Gρ)−1/2

where ρ is the average stellar density. Evaluate Pmin for a binary system of two red
giants with ρ = 10−6 g/cm3, two Sun-like stars with ρ = 1 g/cm3, two white dwarfs
with ρ = 106 g/cm3, and two neutron stars with ρ = 3× 1014 g/cm3.

From Kepler’s laws: (
2π

P

)2

=
GMtot

a3

Substitute a = amin using the expression given in the problem, and solve for P = Pmin:

Pmin = 2π

(
5

2

)1/2(
M

R3

)−1/2

G−1/2

Plug in the average stellar density ρ = 3
4π

M
R3 to find

Pmin = 5π

(
15

8π

)1/2

(Gρ)−1/2

as expected. Evaluating this for binary systems with different densities:

• 2 red giants: Pmin = 4.7× 107 s = 544 days

• 2 Sun-like stars: Pmin = 4.7× 104 s = 0.54 days

• 2 white dwarfs: Pmin = 47 s

• 2 neutron stars: Pmin = 2.7 ms

(b) Consider a red giant of M1 = 1 M�, with a core mass Mc = 0.5 M�, envelope mass
Me = 0.5 M�, and radius R1 = 100 R�. It undergoes a common-envelope event with a
low-mass secondary star of mass M2 and radius R2, which ejects the envelope of the
red giant. The α prescription for common-envelope events predicts the final orbital
separation af :

α

(
GMcM2

af
− GM1M2

ai

)
=
GMcMe

R1
(3)

Solve this equation for af . Show that when α is of order unity and M2 � Me, the
final orbital separation satisfies af � ai, and this equation reduces to

af '
α

2

M2

Me
R1

First, solve Equation (3) for af :

α

(
GMcM2

af
− GM1M2

ai

)
=
GMcMe

R1

McM2

af
=
M1M2

ai
+
McMe

αR1

af =
McM2

2

(
M1M2

ai
+
McMe

αR1

)−1
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Let α ∼ 1 and M2 � Me, so ai ' R1, and M1M2 � McMe. This means M1M2

2ai
� McMe

R1
, so the

expression for af simplifies to

af '
McM2

2

(
�

�
��M1M2

ai
+
McMe

αR1

)−1

af '
α

2

M2

Me
R1

Since ai ' R1, af ' α
2
M2

Me
ai. Then since M2 �Me, we find af � ai.

(c) A stellar merger will occur if the final separation af between the secondary and
the primary’s core is smaller than the minimum orbital separation possible for the
secondary star. By replacing af with amin for the secondary, and using M2 �Mc, find
the minimum secondary mass that can eject the envelope of the primary without
merging with the core of the primary. Evaluate this mass for α = 0.5 and typical
brown dwarf radius R2 = 0.1 R�.

We don’t want a stellar merger, so we require af ≥ amin for the secondary (which has R2, M2).
Plug in the expression for af from the previous problem, and the expression for amin given in the
problem statement:

α

2

M2

Me
R1 ≥

5

2

(
Mtot

M2

)1/3

R2

Solve this for M2 to find

M2 ≥

[(
5

α

)3

MtotM
3
e

(
R2

R1

)3
]1/4

Evaluate this for the given values (note that M1 = 1 M�, and we can also make the approximation

Mtot = M1 +M2 ≈M1) to find M2 ≥ 0.019 M� . This is about the mass of a brown dwarf! So

brown dwarfs and low-mass stars can probably survive common-envelope evolution, but planets
probably can’t.

4. Hydrogen Lines from Stars

(a) Consider a stellar atmosphere of pure hydrogen gas. Let’s suppose H atoms only
populate the n = 1 (ground) and n = 2 states. If n2 is the number density of atoms
with electrons in the n = 2 state, write down an expression for n2/ntot. You will
need to use the Boltzmann factor in addition to your result from the Saha equation
(Problem 3a of HW 3).

The Boltzmann equation gives
n2

n1
=
g2

g1
e−E21/kBT (4)

To find the fraction of excited hydrogen atoms relative to total atoms n2/ntot (where ntot includes
both ionized and un-ionized hydrogen), we want

n2

ntot
=

n2

nH

nH
ntot

=
n2

n1 + n2

(
1− ne

ntot

)
(Note that nH is the number density of un-ionized hydrogen, and that the electron number density
ne should be equal to the number density of ionized hydrogen.)

We can rewrite this as
n2

ntot
=

1

n1/n2 + 1

(
1− ne

ntot

)
(5)
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Figure 1: Plot of the n2/ntot as a function of temperature for a hydrogen gas.

(b) If the continuum photosphere is at a total number density ntot = 1017 cm−3, make
a plot of n2/ntot as a function of stellar surface temperature. Recall that the energy
levels of the H atom are given by E = −13.6/n2 eV and the degeneracies are gn = 2n2.
At what temperature does the value of n2/ntot peak? If the strength of Balmer lines
is determined by the relative population n2/ntot, which stellar spectral type should
show the most prominent H lines?

We can solve Equation (5) using ne/ntot from the solution to Problem 3a in HW 3, and n1/n2

from Equation (4). Plugging in values, we can find n2/ntot as a function of temperature, shown

in Figure 1. From this plot, n2/ntot peaks at Teff ≈ 14, 000 K , which corresponds to the surface

temperature of B stars .

(c) The cross-section at line center for the production of Balmer lines is σ ' 10−16 cm2.
Assuming an isothermal atmosphere for an A-type star with g = 104 cm s−2, calculate
the star’s scale height. Then assume the value n2/ntot = 10−4 is constant, and compute
the optical depth at the center of the Balmer line at the continuum photosphere of
an A-type star. Is this small or large? Calculate the density at which τ = 1 near the
center of the Balmer line. Are photons in the Balmer line emitted above or below
the continuum photosphere of the star?

Calculate the scale height H = P
gρ . Assuming an ideal gas P = ρkBT

µmp
, we have H = kBT

mpg
. Plugging

in values (note that Teff = 10, 000 K for an A-type star), we find H = 8.3× 107 cm .

The optical depth is then given by τ = αH, where α = n2σ is the absorption coefficient of Balmer

photons (at line center). So τ = n2

ntot
ntotσH. Plug in the given values to find τ = 8.3× 104 .

This is very large (τ � 1), so the atmosphere at the continuum photosphere is opaque to Balmer
photons!

Instead, consider when τ = 1:

1 =
n2

ntot
ntotσH

ntot =
1

n2

ntot
σH

Substituting numbers, we find ntot = 1.2× 1012 cm−3 .

This is a lower density than we originally assumed; the photons in the Balmer lines are emit-
ted above the continuum photosphere of the star! To quantify how far above the continuum
photosphere this is, note that the definition of atmospheric scale height is

n ∝ e−z/H
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Figure 2: Plot of the n2/ntot as a function of temperature for a hydrogen gas.

where n is the atmospheric density and z is some height from the stellar “surface.” Then the
number of scale heights NH between the continuum photosphere and where the Balmer photons
are emitted is given by

ncontinuum

nBalmer
= eNH

Solving this (using ncontinuum = 1017 cm3 and nBalmer = 1.2× 1012 cm3 that we just computed),

we find that the Balmer photons are emitted NH = 11.3 scale heights above the continuum
photosphere.

(d) Replot the value of n2/ntot as in part b, but with the number density you computed
in part c. At which temperature do you now expect Balmer lines to be strongest?

For density ntot = 1.2× 1012 cm3, we replot n2/ntot in Figure 2. We find that n2/ntot now peaks

at around Teff ≈ 8, 000 K .

Note that this is now lower than the effective temperature of an A star, primarily because of the
incorrect value n2/ntot = 10−4 we assumed in part (c).

In reality, with a better estimate of n2/ntot, one finds a density ntot ≈ 1014 cm−3, which yields
a peak n2/ntot at Teff ≈ 10, 000 K—the effective temperature of an A star! (This is why A
stars are called A stars; the “Draper” classification system originally sorted stars in alphabetical
order by the strength of their Balmer lines. The categories were then rearranged into their
familiar OBAFGKM order when astronomers realized the different spectral classes corresponded
to different temperatures.)
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