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1. Cepheid variable

(a) Use the continuity equation to show that a radial perturbation that satisfies ∆ρ/ρ =
−∆V/V (where V is volume) implies that ∂

∂r
∆r
r = 0, where ∆r is the radial Langrangian

displacement.

From the continuity equation, you can get the mass equation:

∂m

∂r
= 4πr2ρ (1)

Perturb equation (1) with r → r + ∆r,ρ→ ρ+ ∆ρ:

∂m

∂(r + ∆r)
= 4π(r + ∆r)2(ρ+ ∆ρ) (2)

The left hand side of equation (2) becomes

∂m

∂(r + ∆r)
=

∂m

∂[r(1 + ∆r
r )]

(3)

=
∂m

∂r(1 + ∆r
r ) + r∂

(
∆r
r

) (using chain rule) (4)

=
∂m

∂r[1 + ∆r
r + r ∂∂r (∆r

r )]
(5)

=
∂m

∂r

(
1− ∆r

r
− r ∂

∂r

(
∆r

r

))
(6)

Note that equation (6) comes from the fact that ∆r
r is small, so we can use the approximation

(1 + x)−1 ≈ 1− x for x� 1.

The right hand side of equation (2) becomes (by expanding the expression and throwing out any
non-linear perturbation terms):

4π(r + ∆r)2(ρ+ ∆ρ) = 4π(r2 + 2r∆r + ���(∆r)2 )(ρ+ ∆ρ) (7)

= 4π(r2ρ+ r2∆ρ+ 2rρ∆r + ����2r∆r∆ρ) (8)

= 4πr2ρ

(
1 +

∆ρ

ρ
+ 2

∆r

r

)
(9)

Now set the left- and right-hand sides (equations 6 and 9) equal:

�
��∂m

∂r

(
�1−

∆r

r
− r ∂

∂r

(
∆r

r

))
= ���

4πr2ρ

(
�1 +

∆ρ

ρ
+ 2

∆r

r

)
(10)

⇒ ∆ρ

ρ
= −3

∆r

r
− r ∂

∂r

(
∆r

r

)
(11)
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Using the fact that ∆ρ/ρ = −∆V/V , equation (11) becomes

r
∂

∂r

(
∆r

r

)
=

∆V

V
− 3

∆r

r
(12)

For a spherical star, V = 4
3πr

3. So ∆V = 4
3π(3r2∆r), and ∆V

V = 3∆r
r . Equation (11) then

becomes r ∂∂r
(

∆r
r

)
= 0. This must be true for all r, so we find

∂

∂r

(
∆r

r

)
= 0 (13)

(b) For a radial pulsation satisfying the equation derived in part (a), use the continuity
equation to relate ∆ρ/ρ to ∆r/r.

From the previous part, we know that ∆ρ
ρ = −∆V

V = −(3∆r
r ). So ∆ρ

ρ = −3∆r
r .

(c) Use this relation in the momentum equation to show that ω2 = (3γ − 4)g/r. What
does this imply about the stability of the star when γ < 4/3?

The perturbed momentum equation is

ρ
∂

∂t
~v = −~∇(∆P ) +

∆r

r
~∇P −∆ρ~g − ρ∆~g (14)

Rewrite this using ~v = ∂(∆~r)
∂t and divide both sides by ρr:

∆r̈

r
= − 1

ρr
∇
(

∆P

P
P

)
+

1

r

∆r

r

∇P
ρ
− ∆ρ

ρ

g

r
− ∆g

r
(15)

Now we’ll use a few substitutions:

• From part (b), we have ∆ρ
ρ = −3∆r

r .

• Hydrostatic equilibrium yields ∇P = −ρg (assuming pressure gradient is only in the radial di-

rection), so ∇Pρ = −g. Then from an adiabatic EOS, we have ∆P
P = γ∆ρ

ρ . So ∆P
P = −3γ∆r

r .

(Also, since ∂
∂r

(
∆P
P

)
= −3γ ∂

∂r

(
∆r
r

)
= 0 from part (a), ∆P

P is constant with respect to r.

This means that we can pull ∆P
P out of the gradient.)

• From g = GM
r2 , we find that ∆g

g = −2∆r
r ⇒ ∆g = −2∆r

r g .

Plugging these into equation (15), we find

∆r̈

r
= −∇P

ρ

1

r

∆P

P
+

1

r

∆r

r

∇P
ρ
− ∆ρ

ρ

g

r
− 1

r
∆g (16)

∆r̈ = −3γ
g∆r

r
− g

r
∆r + 3

g

r
∆r + 2

g

r
∆r (17)

= (−3γ + 4)
g

r
∆r (18)

This has the form of
∆r̈ = −ω2∆r (19)

with ω2 = (3γ − 4) gr as expected. This implies that if γ < 4/3, ω2 < 0, so equation (19) has

real exponential solutions ∆r ∝ e±ωt, and the star is unstable .

(d) Using γ = 5/3, for a pulsation amplitude ∆r/r0 = 0.1, calculate the maximum surface
velocity of the star in cgs units.

For γ = 5/3, we find from the solution to the previous problem that ω2 = g
r . Then for periodic

pulsations, ∆r = Ce±iωt, which has the real solution ∆r = C cosωt.
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Solve for this equation by plugging in the maximum amplitude as an initial condition. At t = 0,
∆r = C = 0.1r0. So we have the final solution for the displacement: ∆r = 0.1r0C cosωt.

We can now use this to compute the velocity: v = d∆r
dt = 0.1r0ω sinωt. The maximum velocity

occurs when sinωt = 1, so we have vmax = 0.1r0ω = 0.1r0

√
g/r0. Plugging in values yields

vmax = 2.2× 106 cm/s .

(e) Compute the fractional surface temperature perturbation ∆Teff/Teff and luminosity
perturbation ∆L/L.

For adiabatic radial pulsations, we know ∆T
T = (γ − 1)∆ρ

ρ . Using the solution from part (b), this
gives:

∆T

T
= −3(γ − 1)

∆r

r
(20)

= −3(5/3− 1)
∆r

r
(21)

= −2
∆r

r
= −2(0.1) (22)

So we have ∆Teff

Teff
= −0.2 .

Also, we know L = 4πR2σT 4. This yields ∆L = 4πσ(2R∆R+ 4T 3∆T ), so:

∆L

L
=

(2R∆R+ 4T 3∆T )

R2T 4
(23)

= 2

(
∆R

R

)
+ 4

(
∆T

T

)
= 2(0.1) + 4(−0.2) (24)

So we have ∆L
L = −0.6 .

2. Helioseismology

(a) Show that the sound speed close to the surface is given by c2s = (γ − 1)gz, where
z = R − r � R is the distance from the surface. Assume ρ, T , and P are zero at the
surface.

From hydrostatic equilibrium, we know dP
dr = −gρ. Rewrite this as

dP

ρ
= −gdr (25)

Assuming a polytropic equation of state, we have P = Kργ , so ρ =
(
P
K

)1/γ
. Then equation (25)

becomes
K1/γP−1/γdP = −gdr (26)

Integrate this to find ∫ P (R)

P (r)

K1/γP−1/γdP = −g
∫ R

r

dr (27)

K1/γ

(
γ

γ − 1

)
P
γ−1
γ = g(R− r) (28)

Note that K1/γP−1/γ = ρ−1, and z = R− r, so we get:

P

ρ
=
γ − 1

γ
gz (29)

Now use the definition of the sound speed c2s = γP
ρ to find c2s = (γ − 1)gz .
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(b) For a horizontal wave number, k⊥, and wave frequency, ω, find the maximum distance
zmax that an acoustic wave can penetrate into the star. Write this result in terms of
the associated spherical harmonic l. Do acoustic waves of higher frequency penetrate
deeper or shallower into the star? What about waves of higher l?

From the dispersion relation for acoustic waves:

ω2 = (k2
r + k2

⊥)c2s (30)

k2
r =

ω2

c2s
− k2
⊥ (31)

For the wave to propagate, we need k2
r > 0:

ω2

c2s
− k2
⊥ > 0 (32)

ω2

c2s
> k2
⊥ (33)

Substitute the expression for c2s from part (a) and the definition of the horizontal wavenumber

k⊥ = l(l+1
r :

ω2

(γ − 1)gz
>
l(l + 1)

r2
(34)

Solving for z, we find
ω2r2

(γ − 1)gl(l + 1)
> z (35)

Since R− r � R, we can just set r ∼ R. Equation (35) then gives us a maximum z of

zmax =
ω2R2

(γ − 1)gl(l + 1)
(36)

Since zmax increases as ω increases, acoustic waves of higher frequency ω penetrate deeper into the
star. However, at a given frequency ω, zmax decreases as l increases; waves of higher l penetrate
shallower into the star.

(c) Assume an oscillation mode has a radial displacement that is zero at z = 0 and
z = zmax. Show that ∫ zmax

0

krdz = (n+ 1)π

where kr is the radial wavenumber and n is the number of nodes in the radial wave-
function.

Consider a series of standing waves in a chamber of length L, such that the radial displacement at
z = 0 and z = zmax = 0 is zero. A standing wave with n = 0 nodes will have L = λ/2, a standing
wave with n = 1 nodes will have L = λ, a standing wave with n = 2 nodes will have L = 3/2λ,
etc. This yields a pattern

L =

(
n+ 1

2

)
λ where n = 0, 1, 2, ... (37)

Using the definition of wavenumber (kr = 2π
λ ), we can write

krL =
2π

λ

(
n+ 1

2

)
λ (38)

= π(n+ 1) (39)

Then rewrite L =
∫ zmax

0
dz to find ∫ zmax

0

krdz = (n+ 1)π (40)
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(d) From the equation derived in part (c), use the acoustic wave dispersion relation to
find a relation between n, l, and ω.

From equation (31), solve for kr:

kr =

(
ω2

c2s
− k2
⊥

)1/2

(41)

Then the left-hand side of equation (40) becomes∫ zmax

0

krdz =

∫ zmax

0

(
ω2

c2s
− k2
⊥

)1/2

dz (42)

=

∫ zmax

0

(
ω2

(γ − 1)gz
− l(l + 1)

R2

)1/2

dz (43)

where we have plugged in c2s from part (a) and the definition of k⊥ ≡ l(l+1)
R2 .

Plugging in the definition of zmax from equation (36), this becomes∫ zmax

0

krdz =

√
l(l + 1)

R

∫ zmax

0

(
ω2R2

l(l + 1)(γ − 1)gz
− 1

)1/2

dz (44)

=

√
l(l + 1)

R

∫ zmax

0

(zmax

z
− 1
)1/2

dz (45)

To do this integral, change variables to u = z
zmax

, so du = 1
zmax

dz. Note the boundary conditions
u(z = 0) = 0 and u(z = zmax) = 1.∫ zmax

0

krdz =
ω2R

(γ − 1)gl(l + 1)

√
l(l + 1)

R

∫ 1

0

√
1

u
− 1 du (46)

Using your favorite solver of choice (mine’s WolframAlpha), you can find that
∫ 1

0

√
1
u − 1 du = π

2 .

Equation (40) then becomes

(n+ 1)π =
ω2R2

(γ − 1)g
√
l(l + 1)

π

2
(47)

ω2 = 2(n+ 1)(γ − 1)
√
l(l + 1)

g

R
(48)

(e) For l = 0, the appropriate value of zmax is R. Evaluate the equation derived in part (c)
for l = 0 using the acoustic dispersion relation, still assuming g is constant. Show that
the frequency spacing between modes of successive n is proportional to the square
root of the density of the star.

If l = 0, k⊥ ≡ l(l+1)
R2 = 0. So if we write equation (40) in the form of equation (43), we get∫ zmax

0

(
ω2

(γ − 1)gz

)1/2

dz = (n+ 1)π (49)

Plugging in zmax = R and integrating, we find

(n+ 1)π =
ω√

(γ − 1)g

∫ R

0

z−1/2dz (50)

=
2ω√

(γ − 1)g
R1/2 (51)
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Substitute g = GM
R2 and solve for ω:

(n+ 1)π =
2G−1/2ωn√

γ − 1
M−1/2R3/2 (52)

⇒ ω =

√
γ − 1

2
G1/2(n+ 1)π

(
M

R3

)1/2

(53)

Then consider the frequency difference between mode n and n+ 1:

ωn+1 − ωn =

√
γ − 1

2
G1/2((n+ 2)− (n+ 1))π

(
M

R3

)1/2

(54)

=

√
γ − 1

2
G1/2π

(
M

R3

)1/2

(55)

Note that
√
γ−1
2 G1/2π is constant.

Then since density ρ ∝ M
R3 , we find that (ωn+1 − ωn) ∝ ρ1/2 as expected.

3. Nuclear cross sections

(a) To simplify the integral given in the problem text, write it in terms of E and b, where
E = mABv

2/2 and

b =

√
2mABπZAZBe

2

~
= 0.99ZAZB

√
mAB(MeV)1/2

The starting equation:

〈σv〉 = 4π

(
m

2πkBT

)3/2 ∫ ∞
0

v
S

E
exp

(
− mv2

2kBT

)
exp

(
−2πZAZBe

2

~v

)
v2dv (56)

As suggested, define b and E:

b =

√
2mABπZAZBe

2

~
= 0.99ZAZB

√
mAB(MeV)1/2 (57)

E =
mv2

2
⇔ v =

√
2E

m
⇔ dv =

√
2

m

1

2

dE

E1/2
(58)

and assume S(E) ≈ S0. Then equation (52) becomes

〈σv〉 =
8π

m2

(
m

2πkBT

)3/2

S0

∫ ∞
0

exp

(
− E

kBT

)
exp

(
− b

E1/2

)
dE (59)

〈σv〉 =

√
8

πm

1

(kBT )3/2
S0

∫ ∞
0

exp

(
− E

kBT

)
exp

(
− b

E1/2

)
dE (60)

(b) Recast the integral as the integral of a Gaussian. The Gaussian is centered at E0

with a width ∆ and an amplitude C. Find the values of C, E0, and ∆, and do the
integral.

Note that a Gaussian can be expressed as:

g(E) = C exp

(
− (E − E0)2

(∆/2)2

)
(61)
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The integrand in equation (56) is not a Gaussian but can be approximated as one. The peak of
a Gaussian occurs where the derivative is zero:

d

dE

[
exp

(
− E

kBT

)
exp

(
− b

E1/2

)]
= 0 at E = E0 (62)

⇒

(
− 1

kBT
+

b

2E
3/2
0

)[
exp

(
− E

kBT

)
exp

(
− b

E1/2

)]
= 0 (63)

Since ex 6= 0 at all x, the first term in equation (59) must be zero, and we can solve for E0:

b

E
3/2
0

=
2

kBT
⇒ E0 =

(
bkBT

2

)2/3

(64)

In order for 〈σv〉 to be approximated as a Gaussian, the peak value at E = E0 must be the same
for both g(E) and 〈σv〉:√

8

πm

1

(kBT )3/2
S0 exp

(
− E0

kBT

)
exp

(
− b

E
1/2
0

)
= C exp

(
− (E0 − E0)2

(∆/2)2

)
(65)

This gives us C:

C =

√
8

πm

1

(kBT )3/2
S0 exp

(
− E0

kBT

)
exp

(
− b

E
1/2
0

)
(66)

Finally, to find ∆, note that the second derivative of g(E) should be equal to the second derivative
of 〈σv〉 at the peak:

∂2

∂E2

[
C exp

(
− (E − E0)

kBT
− b

(
1

E1/2
− 1

E
1/2
0

))]
=

∂2

∂E2

[
Ce
−
(

2(E−E0)
∆

)2
]

(67)

∂

∂E

(− 1

kBT
+

b

2E3/2

)
e
− (E−E0)

kBT
−b
(

1

E1/2
− 1

E
1/2
0

) =
∂

∂E

[(
8(E − E0)

∆2

)
e
−
(

2(E−E0)
∆

)2
]
(68)[(

− 1

kBT
+

b

2E3/2

)2

− 3b

4E5/2

]
e
− (E−E0)

kBT
−b
(

1

E1/2
− 1

E
1/2
0

)
=

[(
8(E − E0)

∆2

)2

− 8

∆2

]
e
−
(

2(E−E0)
∆

)2

(69)

Evaluate equation (65) at the peak E = E0 and solve for ∆:

− 3b

4E
5/2
0

= − 8

∆2
(70)

∆2 =
32

3

E
5/2
0

b
=

32

3b

(
bkBT

2

)5/3

(71)

⇒ ∆ =
4√
3

b1/3

21/3
(kBT )5/6 (72)

Plug in b = 2
kBT

E
3/2
0 to find

∆ =

√
16E0kBT

3
(73)
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Now that we have C, E0, and ∆, we can do the integral in equation (57):

〈σv〉 ≈ C
∫ ∞

0

exp

(
−4(E − E0)2

∆2

)
dE (74)

Using the integral for a Gaussian and plugging in the definitions for C and ∆, we find

〈σv〉 ≈ C
√
π

2

∆

2
(75)

≈ π

4

√
2

πm

(
1

kBT

)3/2

S0e
− E0
kBT e

− b

E
1/2
0

√
16E0kBT

3
(76)

≈
√

8

3m

E
1/2
0

kBT
S0e
− E0
kBT e

− b

E
1/2
0 (77)

Plug in E
1/2
0 =

(
bkBT

2

)1/3
=
[√

mπZAZBe
2kBT√

2~

]1/3
to find

〈σv〉 ≈
√

8

3m

(√
mπe2

√
2~

)1/3
Z

1/3
A Z

1/3
B

(kBT )2/3
S0e
− ( bkBT2 )

2/3

kBT e
− b

( bkBT2 )
1/3

(78)

〈σv〉 ≈
[

24/3π1/3e2/3

m1/3~1/3

]
Z

1/3
A Z

1/3
B

(kBT )2/3
S0e
− b2/3

(kBT )1/3

(
3

22/3

)
(79)

(c) Derive the expression

〈σv〉 ∝ 1

ZAZBmAB
S0τ

2e−τ (80)

and give the expression for τ .

Start with the solution from the previous section and rewrite in terms of b:

〈σv〉 ∝
(

e2ZAZB
m~(kBT )2

)1/3

S0e
− 3b2/3

22/3(kBT )1/3 (81)

∝ 1

m1/2

(
b

(kBT )

)1/3

S0e
− 3b2/3

22/3(kBT )1/3 (82)

Now use b =
2E

3/2
0

kBT
to rewrite equation (78) in terms of E0:

〈σv〉 ∝

[
E

3/2
0

(kBT )3

]1/3
S0

m1/2
exp

(
− 3E0

kBT

)
(83)

∝ kBT

E
3/2
0

(
E0

kBT

)2
S0

m1/2
exp

(
− 3E0

kBT

)
(84)

Motivated by the form of equation (80), define τ =
3E0

kBT
and rewrite this equation:

〈σv〉 ∝ kBT

m1/2bkBT
S0τ

2e−τ (85)

Note that b ∝
√
mZAZB , so equation (81) becomes

〈σv〉 ∝ 1

ZAZBmAB
S0τ

2e−τ (86)
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(d) The nuclear energy generation rate scales with temperature as ε = ε0ρT
η. Find η for

the reactions:

i. p+ p at T = 1.0× 107 K and 1.5× 107 K

ii. 7Be + p at T = 1.5× 107 K

iii. 14N + p at T = 1.5× 107 K and 2.5× 107 K

The equation for η is given in KWW Equation 18.39, but we can review how it’s derived. Assume
the energy generation rate goes as the cross section:

〈σv〉 ∝ ε = ε0ρT
η (87)

τ2e−τ ∝ T η ⇒ τ2e−τ = AT η (88)

To solve for η, take the derivative with respect to T :

d

dT

[
τ2e−τ

]
= Aη

T η

T
(89)[

2τ
dτ

dT
− τ2 dτ

dT

]
e−τ =

η

T
AT η (90)

2

τ

dτ

dT
− dτ

dT
=
η

T
(91)

η = T
dτ

dT

(
2

τ
− 1

)
(92)

Solve for dτ
dT using the definition of τ = 3E0

kBT
= 3b2/3

22/3(kBT )1/3 . This yields dτ
dT = − 1

3
τ
T :

η = −1

3
(2− τ) (93)

=
τ

3
− 2

3
(94)

=
E0

kBT
− 2

3
(95)

=

[√
2mπZAZBe

2

2~

]2/3
1

(kBT )1/3
− 2

3
(96)

Plugging in numbers for the given equations:

i. m = mAmB
mA+mB

=
mp
2 and ZA = ZB = 1: η = 4.2 at T = 107 K, η = 3.6 at T = 1.5× 107 K

ii. m = 7
8mp and ZA = 4, ZB = 1: η = 12.4 at T = 1.5× 107 K

iii. m = 14
15mp and ZA = 7, ZB = 1: η = 19 at T = 1.5× 107 K, η = 16 at T = 2.5× 107 K

4. Deuterium burning

(a) What are the values of mAB, ZA, ZB, and b2 (defined in the previous problem) for
Deuterium burning? Write down the resulting thermally-averaged value of 〈σv〉 for
D fusion.

For deuterium burning, ZA = ZB = 1 . The reduced mass mAB is given by mAB =
mpmd
mp+md

=

2m2
p

mp+2mp
⇒ mAB =

2

3
mp .

Then using the formula from part (3b), we find b = 0.99(1)(1)
√

2/3(MeV)1/2 ⇒ b2 = 0.66 MeV

Plugging in the given value of S0 and our value for b we get

〈σv〉 = 8× 104 barn · cm s−1 T
−2/3
7 e−17.3T

−1/3
7 (97)
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(b) The luminosity of a protostar on the Hayashi track is

L ≈ 0.2L�

(
M

M�

)1/2(
R

R�

)2

By equating this with the energy released by Kelvin-Helmholtz contraction, calculate
the local contraction time tc as a function of the mass and radius of the star. Does
the contraction time get shorter or longer as the star contracts?

The energy released by Kelvin-Helmholtz contraction is simply the gravitational binding energy
of a spherical object (note that the exact coefficient of 3/5 in front doesn’t matter much, just the
main scaling relations):

EKH = −Ugr =
3

5

GM2

R
(98)

The local contraction time is then given by dividing EKH by the luminosity (energy generation
rate):

tc =
EKH
L

(99)

=
3

5

GM2

R

(
M�
M

)1/2(
R�
R

)2
1

0.2L�
(100)

tc = 9× 107 y

(
M

M�

)3/2(
R

R�

)−3

(101)

As the star contracts, the radius decreases and the mass stays the same, so tc gets longer .

(c) What is the lifetime tD of a D nucleus at the center of the star in terms of the local
density and temperature? Use the properties of n = 3/2 polytropes to write tD as a
function of M and R. Does the D lifetime get shorter or longer as the star contracts?

The lifetime of a D nucleus is just the inverse of the collision rate

t−1
D = nH〈σv〉 (102)

Substituting nH = ρ/µmp and 〈σv〉 from equation (93), we can get tD in terms of temperature
and density:

tD = 1.04× 10−5ρ−1T
2/3
7 e17.3T

−1/3
7 (103)

tD = 2.24× 10−10ρ−1T 2/3e3730T−1/3

(104)

At the center of the sun, for an n = 3/2 polytrope we have

ρc = an〈ρ〉 =
5.99 · 3M

4πR3
= 1.43

M

R3
(105)

The pressure is given by Pc = 0.77GM2/R4 (cf. HKT Eq. 7.39) so the temperature is

Tc =
µmpPc
ρck

(106)

=
.6mp.77G

1.43k

M2

R4

R3

M
(107)

= 2.6× 10−16M

R
(108)
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We can use these expressions to write tD in terms of M and R only:

tD = 6.4× 10−21

(
M

R3

)−1(
M

R

)2/3

e5.8×108(M/R)−1/3

(109)

= 6.4× 10−21M−1/3R7/3e5.8×108(M/R)−1/3

(110)

= 10−6

(
M

M�

)−1/3(
R

R�

)7/3

e
19
(
M�
M

R
R�

)1/3

s (111)

(112)

As R decreases tD will decrease; the D lifetime gets shorter as the star contracts.

(d) Give the numerical value of RD for M = 0.03 and 0.1M�. For each of these two cases,
also determine the central temperature of the star Tc and the D lifetime tD when
R = RD. Does D fusion occur before or after the star reaches the main sequence?

To find the critical radius we set tc(R,M) = tD(R,M):

9× 107 y

(
M

M�

)3/2(
R

R�

)−3

= 10−6 s

(
M

M�

)−1/3(
R

R�

)7/3

e
19
(

M�
M

R
R�

)1/3

(113)(
M

M�

)11/6(
R

R�

)−16/3

= 5.8× 10−22e
19
(
M�
M

R
R�

)1/3

(114)

This expression is a function of only M and R, so for a given M we have an equation for R = RD.
For M = .03M� we get(

R

R�

)−16/3

= 3.6× 10−19e
61
(
R
R�

)1/3

⇒ R/R� = 0.45 (115)

Using our expression for Tc (eq. 104) at M = .03M� and R = .45R� we find Tc = 5.0× 105 K .

Plugging into tc (or equivalently tD), we find the time is 5× 106 y .

Repeat the same steps for M = .1M� and find(
R

R�

)−16/3

= 4.0× 10−20e
41
(
R
R�

)1/3

⇒ R/R� = 1.21 (116)

Using our expression for Tc at M = .1M� and R = 1.21R� we find Tc = 6.1× 105 K . Plugging

into tc (or equivalently tD), we find the time is 1.6× 106 y .

D fusion occurs at lower temperatures than H fusion. Therefore, it occurs before the star reaches
the main sequence.

(e) Explain quantitatively whether D fusion can halt (at least temporarily) the KH
contraction of the star. If so, how long does the “D main sequence” last for the two
cases considered in part (d) above?

D fusion can halt KH contraction when the luminosity from D fusion overcomes the convective

luminosity Lconv ≈ 0.2L�

(
M
M�

)1/2 (
R
R�

)2

. The “D main sequence” will last as long as Deuterium

fusion can power the star:

tD m.s. ∼
ED
Lconv

, (117)

where ED ∼ ND · χ is the energy released from D fusion. Here, χ is the energy liberated per
reaction, which for D fusion is 5.5 MeV = 8.8 × 10−6 erg. The number of Deuterium atoms can
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be found using ND = 2× 10−5NH = 2× 10−5M/mp. Solving for tD m.s. gives

tD m.s. =
ND · χ
L

= 3.2× 1014

(
M

M�

)1/2(
R

R�

)−2

= 107 y

(
M

M�

)1/2(
R

R�

)−2

Plugging in for our two cases:

M = .03M� and R = .45R� ⇒ tD m.s. = 8.6× 106 y

M = .1M� and R = 1.23R� ⇒ tD m.s. = 2.1× 106 y

If tD m.s. is longer than tc, then there is at least a temporary halt in the contraction, and indeed
this is the case.

Now that you have finished this problem you might find it interesting to look at some of the figures
in Burrows et al., 2001, RVMP, 73, 719, which show evolutionary calculations of the contraction
of low mass stars and brown dwarfs and the effects of D fusion. After D fusion comes Li fusion
and then, if the mass is big enough, H fusion.
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