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1. Cepheid variable

(a) Use the continuity equation to show that a radial perturbation that satisfies Ap/p =
—AV/V (where V is volume) implies that 2 4~ = 0, where Ar is the radial Langrangian
displacement.

From the continuity equation, you can get the mass equation:

om
e 4 p (1)

Perturb equation (1) with r — 7+ Ar,p — p+ Ap:
om
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A(r+ Ar) m(r+ Ar)*(p+ Ap) (2)
The left hand side of equation (2) becomes
om B am o
O(r+Ar) — 9fr(1+ Ar)]
om . .
- or(1+ £2) +ro (&) (using chain rule) (4)
om
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om Ar o [ Ar
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Note that equation (6) comes from the fact that % is small, so we can use the approximation
(l+2)tx1l—aforr<l.

The right hand side of equation (2) becomes (by expanding the expression and throwing out any
non-linear perturbation terms):

4r(r + A7) (p+ Ap) = 4n(r? + 2rAr + M)(P + Ap) (7)
= 4n(r’p + r*Ap + 2rpAr + 2rArAp) (8)
= 471r?p <1+Ap+2Ar> 9)

p r

Now set the left- and right-hand sides (equations 6 and 9) equal:
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Using the fact that Ap/p = —AV/V, equation (11) becomes
=—-3— (12)

For a spherical star, V = 273, So AV = 1r(3r2Ar), and &% = 357, Equation (11) then

3
becomes 7’807 (g) = 0. This must be true for all r, so we find

% <ATT’> =0 (13)

For a radial pulsation satisfying the equation derived in part (a), use the continuity
equation to relate Ap/p to Ar/r.

From the previous part, we know that % = fA?V = —(34r). So

Ap

Ap _ _aAr
5 38

Use this relation in the momentum equation to show that w? = (3y — 4)g/r. What
does this imply about the stability of the star when v < 4/37

The perturbed momentum equation is

o - Ar
p¥ = —V(AP) + —“VP = Apj — pAg (14)

Rewrite this using ¢ = a(af) and divide both sides by pr:

& Ly(BLp). 18rTr_ vy A i~
T or rrop pr r
Now we’ll use a few substitutions:
e From part (b), we have | TAp 73%1}
e Hydrostatic equilibrium Lyiei&é%bi;: pg (assuming pressure gradlent is only in the radial di-
rection), so E = —g. Then from an adiabatic EOS, we have &2 = fyAp So, M; _ 75’) 7%1

(Also, since % (A—Ff)) = —375 (%) = 0 from part (a), APP is constant Wlth respect to r.

This means that we can pull AP out of the gradient.)

OFromg—

Plugging these into equation (15), we find
AF VPlAP+1ArVP Apg 1

P ?777 PR (16)
A = *?wg N 3 Ar + 2§Ar (17)
= (=37 + 4)§Ar (18)
This has the form of
Ai = —w?Ar (19)

with |w? = (3y —4)£ | as expected. This implies that if v < 4/3, w? < 0, so equation (19) has
+wt

real exponential solutions Ar oc e***, and ’ the star is unstable ‘

Using v = 5/3, for a pulsation amplitude Ar/ro = 0.1, calculate the maximum surface
velocity of the star in cgs units.

For v = 5/3, we find from the solution to the previous problem that w? = 9. Then for periodic
pulsations, Ar = Ce™™* which has the real solution Ar = C coswt.



Solve for this equation by plugging in the maximum amplitude as an initial condition. At ¢ = 0,
Ar = C = 0.1rg. So we have the final solution for the displacement: Ar = 0.1rqC cos wt.
We can now use this to compute the velocity: v = ddAtr = 0.1rpwsinwt. The maximum velocity

occurs when sinwt = 1, so we have vpax = 0.1row = 0.1r9+/g/r9. Plugging in values yields

[ tmax = 2.2 x 105 cm /s |

(e) Compute the fractional surface temperature perturbation AT.g/Tesr and luminosity
perturbation AL/L.

For adiabatic radial pulsations, we know % =(y- 1)%. Using the solution from part (b), this
gives:
AT Ar
= 3(v—1)= 2
=312 (20)
= —3(5/3 - 1)% (21)
A
=220 = 900.1) (22)
T
So we have % =-0.2]|
eff

Also, we know L = 4w R?0T*. This yields AL = 470 (2RAR + 4T3 AT), so:

AL  (2RAR+4T3AT)
T B (23)

=2 (ﬁf) +4 (ATT) =2(0.1) +4(—0.2) (24)

So we have % =—-0.6|

2. Helioseismology

(a) Show that the sound speed close to the surface is given by ¢? = (y — 1)gz, where
z = R —r < R is the distance from the surface. Assume p, T, and P are zero at the

surface.
From hydrostatic equilibrium, we know % = —gp. Rewrite this as
dpP
— = —gdr 25
5 (25)
Assuming a polytropic equation of state, we have P = Kp?, so p = (%)1/7. Then equation (25)
becomes
KY7p=t74p = —gdr (26)
Integrate this to find
P(R) R
/ KY7p=t7dp = —g/ dr (27)
P(r) r
K (7 1) P5 = g(R—7) (28)
v —

Note that K/7P~1/7 = p~1, and z = R —r, so we get:

P -1
LI gz (29)
p v

Now use the definition of the sound speed ¢ = % to find | ¢ = (v — 1)gz |



(b)

For a horizontal wave number, &k, , and wave frequency, w, find the maximum distance
Zmax that an acoustic wave can penetrate into the star. Write this result in terms of
the associated spherical harmonic [. Do acoustic waves of higher frequency penetrate
deeper or shallower into the star? What about waves of higher [?

From the dispersion relation for acoustic waves:

wr=(E2+ k)3 (30)
2
w

For the wave to propagate, we need k2 > 0:
2

%fki>0 (32)
2
%>ﬁ (33)

S

Substitute the expression for ¢ from part (a) and the definition of the horizontal wavenumber
k= 1(1+1

T

2 (l+1
W I+

34
(v =gz r? 39
Solving for z, we find
w22
—— > 35
(- Dgli+1) ~~ )
Since R —r < R, we can just set r ~ R. Equation (35) then gives us a maximum z of
w?R?
Zmax = T~ 36
(=Dl + 1) )

Since zyax increases as w increases, acoustic waves of higher frequency w penetrate deeper into the
star. However, at a given frequency w, zmax decreases as [ increases; waves of higher [ penetrate
shallower into the star.

Assume an oscillation mode has a radial displacement that is zero at z = 0 and
Z = Zmax- Show that

/ krdz=(n+ )7
0

where £k, is the radial wavenumber and n is the number of nodes in the radial wave-
function.

Consider a series of standing waves in a chamber of length L, such that the radial displacement at
z=0and z = 2y = 0 is zero. A standing wave with n = 0 nodes will have L = A\/2, a standing
wave with n = 1 nodes will have L = A, a standing wave with n = 2 nodes will have L = 3/2),
etc. This yields a pattern

L= (n—;—l))\wheren:&lﬂ,... (37)
Using the definition of wavenumber (k. = %), we can write
2r (n+1
kL = — A 38
(") (59
=7(n+1) (39)

Then rewrite L = fozm'“‘ dz to find

/ T kdz = (n+ D (40)
0




(d)

From the equation derived in part (c), use the acoustic wave dispersion relation to
find a relation between n, [, and w.

wz 1/2
b= (% 1) (41)

S

From equation (31), solve for k.

Then the left-hand side of equation (40) becomes

Zmax Zmax Wz 1/2
/0 k.dz :/0 (c2 —ki) dz (42)

1(1+1)
RZ -

where we have plugged in ¢? from part (a) and the definition of k, =
Plugging in the definition of zyax from equation (36), this becomes

10+ 1) / ( w?R? >1/ 2
kydz = Y¥——= —1 dz 44
A R )y \iGr00-Dg= (44)

- \/l(;Tl) /OZW (P — 1)1/2 dz (45)

z
Zma )
max

To do this integral, change variables to u =
u(z=0) =0 and u(z = zmax) = 1.

e w’R VIEED o
e Ve 1o

Using your favorite solver of choice (mine’s WolframAlpha), you can find that fol \/ % —1du=2
Equation (40) then becomes

so du = idz. Note the boundary conditions

w?R? T
(T = (y— g1 +1)2 o
W =2(n+1)(y—1) z(z+1)% (48)

For | = 0, the appropriate value of zyax is R. Evaluate the equation derived in part (c)
for | = 0 using the acoustic dispersion relation, still assuming ¢ is constant. Show that
the frequency spacing between modes of successive n is proportional to the square
root of the density of the star.

Ifl=0k = W+ — 0. So if we write equation (40) in the form of equation (43), we get

:
[7(52) semrom g

Plugging in zy,.x = R and integrating, we find

R
n ™= v 2124z
(n+1) =1, ), d (50)
_ 2w 1/2
(v — l)gR o1



Substitute g = %1‘2/[ and solve for w:

2612y,
v—1

— M 1/2

(n+ D= M~Y/2R3/?

Then consider the frequency difference between mode n and n + 1:

— 1 M 1/2
c%ﬂ—wnzvgcwam+awwn+nm(RJ
1/2
= 7\/7_1(11/2? M
2 R3

Note that 7”2716?1/2# is constant.

Then since density p oc 2%, we find that | (wy11 — wy) o p'/? | as expected.

3. Nuclear cross sections

(a) To simplify the integral given in the problem text, write it in terms of E and b, where

E = mABv2/2 and

\/QmABﬂ'ZAZBeQ

b=
h

=0.99Z4Zp\/mag(MeV)1/2

The starting equation:

(ov) =4 m )" /wvge _m? e _2mZaZpe v2do
O =N Sk T o CESP\ ok, )P w

As suggested, define b and E:
\/2’171,4371'Z,4ZB€2

b= =0.99Z4Zp\/mag(MeV)'/?

h
mv? 2F 21 dE
R s e o

and assume S(FE) ~ Sy. Then equation (52) becomes

8T m 3/2 > F b
(o) = 3 (27TkBT) SO/O exp </€BT> exp <E1/2> dE

/8 1 i E b
<UU> = WWSOA exp <_M> exp <_E'1/2) dFE

(56)

(59)

(60)

Recast the integral as the integral of a Gaussian. The Gaussian is centered at Ej
with a width A and an amplitude C. Find the values of C, Ey, and A, and do the

integral.
Note that a Gaussian can be expressed as:



The integrand in equation (56) is not a Gaussian but can be approximated as one. The peak of
a Gaussian occurs where the derivative is zero:

d E b
R
1 b E b

- ( kol zEg/2> [exp < kBT> op < E“Zﬂ - e
Since e* # 0 at all z, the first term in equation (59) must be zero, and we can solve for Ey:
b 2 bkpT\*?
= Ey = 64
EE i ( 2 ) ©

In order for (ov) to be approximated as a Gaussian, the peak value at E = Ey must be the same
for both g(E) and (ov):

This gives us C:
B 8 1 Ey b
= e (o) o (5m) “

Finally, to find A, note that the second derivative of g(E) should be equal to the second derivative
of (ov) at the peak:

0? (E — Ep) 1 1 0? - (HEE)?
a7 |© P < BT\ Er g ) || e o6 ] (67
o [La oy (i) o (s gy (e
oF kpT = 2E3/2 oF A2
(68)
IR P03 f—%;i“)fb(ﬁ*ﬁ) C|(8(E-E)\* 8 - (AgEw)?
keT ' 2E92) ~ aps | © - A? A?|©
(69)
Evaluate equation (65) at the peak E = Ej and solve for A:
3b 8
= (70)
5/2 2
Az B2E 32 (bheT (71)
3 b 3\ 2
4 p/3 5/6

Plug in b = kBLTEg/Q to find

16 EgkpT
A:1/6+B (73)




Now that we have C, Ey, and A, we can do the integral in equation (57):

(ov) C/ exp( EAEO))dE

Using the integral for a Gaussian and plugging in the definitions for C' and A, we find

lov) ~ O35
3/2 __b
%E 2( 1 ) Soei%e Eclj)/2 16E0kBT
4V mm \ kT V 3
8 B _m iin
M\ ST e e

1/3
Plug in /% = (bkgT)l/?’ _ [ﬁrZ?/ZEJ;erBT] to find

1/3 1/3 1/3 YRpTV/S b
oo\ (o) s e O
B

: 1/3 ,1/3
(o) = 94/3:1/3,2/3 ZA/ ZB/ G <ka2;/>31/'%(22/3)
T /3R1/3 (kpT)?/3 0
(c) Derive the expression
1
S 2 _ —T
(ov) x ZZaman 0T e

and give the expression for 7.
Start with the solution from the previous section and rewrite in terms of b:

2 1/3 352/3
mh(kp

1 b 1/3 _ 352/3
e Spe 2273 (kpT)1/3
m172 \ kpT)

_ 2B
Now use b = T T

to rewrite equation (78) in terms of Fjy:
1/3
E)?

So o 3Eo

(k‘BT)3 m1/2 P k‘BT
kT ([ By 28 o 3By
g2 \ksT) w12 P\ " kpT

3Ey

(ov) x

Motivated by the form of equation (80), define | 7 = —— | and rewrite this equation:

kgT

kgT
(ov) ox — D
ml/ZkaT

507_26—7

Note that b o< v/mZaZp, so equation (81) becomes

(86)



(d) The nuclear energy generation rate scales with temperature as ¢ = ¢gpT". Find 7 for
the reactions:

i.p+pat T=10x10" K and 1.5 x 107 K
ii. ' Be+patT=15x10" K
iii. “N+patT=15x10" K and 2.5 x 107 K

The equation for 7 is given in KWW Equation 18.39, but we can review how it’s derived. Assume
the energy generation rate goes as the cross section:

(ov) x € = egpT" (87)
e T x T" = %7 = AT" (88)

To solve for 7, take the derivative with respect to T":

d . "
7 o] = An= (89)
dr odr | _ n
ST 28 e = g
{ T T dT] e T (90)

dT
Solve for ‘di—; using the definition of 7 = % = % This yields (% = _%%:
n=-52-r) (93)
- % _ % (94)
_ %T _ ; (95)
V2mnZ 4 Zpe? e 1 2
- 2h (kgT)'/3 3 (96)

Plugging in numbers for the given equations:

iom = mams — Teoand Zy = Zp = 1: [n=42|at T=10" K, |[n =3.6|at T = 1.5 x 10" K
ii. m=1Im,and Zy =4, Zp=1:|np=124]at T =15x 10" K
iii. m:%mpandZA:ZZB:l:atT:1.5><107K,atT:2.5><107K

4. Deuterium burning

(a) What are the values of map, Z4, Zp, and b? (defined in the previous problem) for
Deuterium burning? Write down the resulting thermally-averaged value of (ov) for

D fusion.
For deuterium burning, | Z4 = Zg = 1| The reduced mass map is given by map = 7;“’::’:7;2 =
P
217112j . 2
7mp+2mp = map = gmp .

Then using the formula from part (3b), we find b = 0.99(1)(1)/2/3(MeV)'/2 = |[b? = 0.66 MeV

Plugging in the given value of Sy and our value for b we get

(ov) =8 x 10* barn - cm s™! T;2/3e_17'3T7_1/3 (97)




(b)

The luminosity of a protostar on the Hayashi track is

MAY2 /2
L ~02L — —
© (M®> <R®>

By equating this with the energy released by Kelvin-Helmholtz contraction, calculate
the local contraction time t. as a function of the mass and radius of the star. Does
the contraction time get shorter or longer as the star contracts?

The energy released by Kelvin-Helmholtz contraction is simply the gravitational binding energy
of a spherical object (note that the exact coefficient of 3/5 in front doesn’t matter much, just the

main scaling relations):

3 GM?
EKH - *Ugr - g R

The local contraction time is then given by dividing Ex g by the luminosity (energy generation
rate):

(98)

E
te=~7" (99)
_3GM? (M) (Ro)* 1 (100)
5 R \ M R ) 0.2Lg
M 3/2 R -3
te=9%x10"y () () 101

As the star contracts, the radius decreases and the mass stays the same, so | t. gets longer |.

What is the lifetime tp of a D nucleus at the center of the star in terms of the local
density and temperature? Use the properties of n = 3/2 polytropes to write ¢tp as a
function of M and R. Does the D lifetime get shorter or longer as the star contracts?

The lifetime of a D nucleus is just the inverse of the collision rate
to! = ny(ov) (102)

Substituting ny = p/um, and (ov) from equation (93), we can get tp in terms of temperature
and density:

1/3

tp = 1.04 x 1075~ 172/ 317377 (103)

tp = 2.24 x 10710 12/3¢3780T /7 (104)

At the center of the sun, for an n = 3/2 polytrope we have

5.99-3M M

The pressure is given by P. = 0.77GM?/R* (cf. HKT Eq. 7.39) so the temperature is

P,
T, = % (106)
6m,.7T7G M? R3
T 143k R*M (107)
M
=26 x 10*16E (108)
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We can use these expressions to write tp in terms of M and R only:

M\t MmN\ Iy
tp =6.4x 1072 (R3> (R) e®8x10%(M/R)~H/? (109)
— 6.4 x 10~ M —L/BRT/35-8x10%(M/R) "1/ (110)
M —-1/3 R 7/3 Mg g \1/3
=110~ () () 319( M RE@) S (111)
Mg Ro
(112)

As R decreases tp will decrease; ’the D lifetime gets shorter ‘ as the star contracts.

(d) Give the numerical value of Rp for M = 0.03 and 0.1M. For each of these two cases,
also determine the central temperature of the star 7, and the D lifetime ¢{p when
R = Rp. Does D fusion occur before or after the star reaches the main sequence?

To find the critical radius we set t.(R, M) = tp(R, M):

MY/ NP M\ Y3 /R \T/3 19(M7®L>1/3
9%x 107y [ — — =10%s(— — M R 113
. y<M®> <R®) b<M®> (Re) ¢ : (113)
11/6 —16/3 M ., \1/3
<Aj\f> (;) — 5.8 x 107205 75) (114)
(O] ©

This expression is a function of only M and R, so for a given M we have an equation for R = Rp.
For M = .03Mg we get

—16/3 R \1/3
(5) =3.6 x 10—19661(%) = R/Re = 0.45 (115)
©

Using our expression for T, (eq. 104) at M = .03Mg and R = .45Rg we find ’ T, =5.0x10° K ‘

Plugging into t. (or equivalently tp), we find the time is |5 x 10° y|.

Repeat the same steps for M = .1My and find

—16/3 R \1/3
(}f) —10x 10720 (F) T S p/Ry — 1.1 (116)
©

Using our expression for T, at M = .1Mg and R = 1.21 R we find ’ T.=6.1x10° K ‘ Plugging

into ¢, (or equivalently ¢p), we find the time is | 1.6 x 10° y|.

D fusion occurs at lower temperatures than H fusion. Therefore, it occurs | before | the star reaches
the main sequence.

(e) Explain quantitatively whether D fusion can halt (at least temporarily) the KH
contraction of the star. If so, how long does the “D main sequence” last for the two
cases considered in part (d) above?

D fusion can halt KH contraction when the luminosity from D fusion overcomes the convective

1/2 2
luminosity Leony =~ 0.2L¢ (MJ%) (%) . The “D main sequence” will last as long as Deuterium

fusion can power the star:
Ep

LCO”L’U

tD m.s. ™ 5 (117)

where Ep ~ Np - x is the energy released from D fusion. Here, x is the energy liberated per
reaction, which for D fusion is 5.5 MeV = 8.8 x 1076 erg. The number of Deuterium atoms can

11



be found using Np =2 x 107°Ny = 2 x 10_5M/mp. Solving for tp p,.s. gives

Np - x
L

M 1/2 R\ 2
3.2 x 101 — _—
. (MQ) <R®>

_107y<M )”2 (R)
Mg Rg

tpm.s. =

Plugging in for our two cases:

M = .03My and R = 45Rq = | tp e = 8.6 x 10° y |

M = 1My and R=1.23Ro = |tp e = 2.1 x 10° y |

If tp i.s. is longer than t., then there is at least a temporary halt in the contraction, and indeed
this is the case.

Now that you have finished this problem you might find it interesting to look at some of the figures
in Burrows et al., 2001, RVMP, 73, 719, which show evolutionary calculations of the contraction

of low mass stars and brown dwarfs and the effects of D fusion. After D fusion comes Li fusion
and then, if the mass is big enough, H fusion.
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