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1. Equation of state and the Chandrasekhar mass

(a) Using the Fermi-Dirac distribution for non-relativistic electrons, derive the relation-
ship between density and pressure, and hence appropriate value of γ and K.

The Fermi-Dirac distribution is given by

ne =
8π

h3

∫ ∞
0

dp p2
[
exp

(
ε− µ
kBT

)
+ 1

]−1
(1)

Then pressure is given by

Pe =
1

3

∫
vp

dN

d3xd3p
d3p (2)

=
8π

3h3

∫ ∞
0
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[
exp
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kBT

)
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(3)

We can rewrite this in terms of momentum using the fact that the Fermi-Dirac distribution is
essentially a step function:

Pe =
8π

3h3

∫ pF

0

dp vp3 (4)

where pF =
(

3h3ne
8π

)1/3
is the Fermi momentum. In the non-relativistic limit, substitute v ∼ p/me

and the definition of the Fermi momentum into equation (4):

Pe =
8π

3h3me

∫ pF

0

dp p4 (5)

=
8π

3h3me

p5F
5

(6)

Note that electron number density ne = ρ
µemp

, where µe = 2 for 4He. Then we can write the

electron pressure as

Pe =

(
8π

3h3

)−2/3(
1

5me

)(
1

µemp

)5/3

ρ5/3 (7)

Then γ = 5/3 and K =
(

8π
3h3

)−2/3 ( 1
5me

)(
1

µemp

)5/3
= 3.135× 1012 cm4g−2/3s−2 in the poly-

tropic equation P = Kργ .

(b) Using the mass-radius relations we derived for polytropes, derive the mass-radius
relation for a white dwarf. Calculate the radius of a 1 M� white dwarf.

From the discussion of polytropes (HKT Eq. 7.40):

K =

[
4π

ξn+1(−θn)n−1

]1/n
ξ1

G

n+ 1
M1−1/nR−1+3/n (8)
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Here, n = 1
γ−1 = 3/2 for a γ = 5/3 polytrope. From HKT Table 7.1, ξ1 = 3.6538 and

−θn(ξ1) = 0.20330 for n = 3/2. Set this equal to the equation for K from part (a) and solve for

R: R = (1.11× 1020 cm g1/3) M−1/3 .

For a 1 M� white dwarf, this yields R = 8.81× 108 cm ≈ 0.01 R� .

(c) Now assume the helium white dwarf is supported by highly relativistic degeneracy
pressure. Use the Fermi-Dirac distribution to derive the appropriate values of γ and
K, and then derive its mass. Express the mass in units of M�.

Now consider relativistic electrons, so v = c. Then

Pe =
8π

3h3

∫ pF

0

dp vp3 (9)

=
8πc

3h3

∫ pF

0

dp p3 (10)

=
8πc

3h3
p4F
4

(11)

=
8πc

3h3
c

4

(
3h3ne

8π

)4/3

(12)

Again, plugging in the definition for ne = ρ
µemp

, we find that the pressure goes as

Pe =

(
8π

3h3

)−1/3 ( c
4

)( 1

µemp

)4/3

ρ4/3 (13)

So γ = 4/3 and K =
(

8π
3h3

)−1/3 ( c
4

) (
1

µemp

)4/3
=4.9×1014 g−1/3 cm3 s−2 (again assuming µe =

2 for 4He).

To get the mass, start with the equation given in class for a polytrope:

M = 4π

(
n+ 1

4πG
K

)3/2

ρc
3− n

2n

(
−ξ2 dθ

dξ

)
ξ1

(14)

where n = 1
γ−1 = 3 for a γ = 4/3 polytrope. Then

M = 4π

(
K

πG

)3/2

(ξ1)2(−θn)ξ1 (15)

Use values from HKT Table 7.1: ξ1 = 6.8969 and −θn(ξ1) = −.04243 for n = 3 to find

M = 1.43 M� . This is very close to the Chandrasekhar mass!

(d) Recalculate this mass for a relativistic white dwarf made of pure gold (197Au). Gold
is currently worth $39.47/g. What is the value of this golden dwarf?

The only thing that changes here is the value of µe, which is the number of baryons per electron.
For 197Au, which has atomic number Z = 79, this yields µe = 197

79 = 2.49.

Then use the formula from part (c) to find K = 3.7×1014 g−1/3 cm3 s−2. Plug this into equation

(15) for M to find M = 1.88× 1033 g= 0.94 M�.

The cost of this golden dwarf is $7.42× 1034 !

(e) If the golden dwarf has a radius of 3000 km and an internal temperature of 107 K,
will most of its mass be liquid gold or solid gold?

To determine if the gold is solid (crystallized) or not, calculate the ratio of Coulomb to thermal

energy Γc = Z2e2

akBT
.
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The separation between gold ions is given by a =
(

3
4πnion

)1/3
, where nion is the number density

of ions. The number density is given by nion = 3M
197mp(4πR3) .

This yields

Γc = Z2e2
(

3M

197mp(4πR3)

)1/3(
3

4π

)−1/3
(kBT )−1 (16)

Plugging in values gives Γc = 6.3 × 103 � 100, which is well into the regime of crystallization.

Most of the mass of the white dwarf will be solid gold.

(f) If the surface layers of the golden dwarf have an opacity of κ = 10 cm2/g, what is the
surface pressure at the photosphere? If the gold at the photosphere can be treated
as an ideal gas and has a temperature of 104 K, what is its density? The radius of
a gold atom is aAu = 1.74 × 10−8 cm. Is the gold at the surface likely to be pressure
ionized?

Recall (from, e.g., the last HW set) that the surface pressure at the photosphere is given by
P (τs) = 2gs

3κ . Plugging in the surface gravity gs = GM
R2 yields P (τs) = 2GM

3R2κ .

Use κs = 10 cm2/g and the values of M and R from the previous parts to find the surface pressure

at the photosphere P (τs) = 9.3× 107 erg cm−3 .

Now, assuming the photosphere is an ideal gas, P = ρkBT
µmp

so ρ =
Pµmp
kBT

. Recall that µ is the mean

molecular weight µ = # baryons
# particles = 197

1+79 = 2.46. Plug in values to find ρ = 2.8× 10−4 g/cm3 .

Pressure ionization occurs when ρ & mN
4πa3N/3

. For 197Au, mN = 197mp and aN = 1.74× 10−8 cm.

This yields mN
4πa3N/3

= 14.9 g/cm3. So ρ < mN
4πa3N/3

, and pressure ionization is unlikely.

2. Nuclides and kilonova event rates

(a) Consult the table of nuclides. Identify two stable, pure s-process nuclides and two
stable, pure r-process nuclides.

Note that the nuclides must be stable (or at least long-lived)!

Some examples of pure s-process elements: 92Mo, 102Pd

Some examples of pure r-process elements: 76Ge, 94Zr

(b) In the Sun, the mass fraction of r-process nuclides is Xrp ∼ 10−7. The stellar mass
of the Milky Way is MMW ∼ 1011 M�. Assuming similar abundances in other stars,
estimate the total r-process mass within the Milky Way.

Mrp,MW = XrpMMW = 104 M� .

(c) Assuming r-process elements are produced solely in neutron star mergers, and that
Mrp ∼ 0.03 M� of r-process nuclides were expelled from GW170817, estimate the
number of neutron star mergers that have occurred in the Milky Way, and the
average neutron star merger rate over the τMW ∼ 10 Gyr lifetime of the Milky Way.

The number of neutron star mergers is given by NNSM=(mass of r-process elements)/(mass of

r-process elements per NSM). So NNSM =
Mrp,MW

Mrp
= 3.3× 105 .

The average rate of neutron star mergers is just NNSM/τMW = 3.3× 10−5 yr−1 .

(d) Type Ia supernovae synthesize MFe ∼ 0.5 M� of iron, whose mass fraction in the Sun
is XFe ∼ 10−3. Estimate the average Type Ia supernovae rate of the Milky Way.

As in part (b), first compute the total mass of iron in the Milky Way: MFe,MW = 108 M�.

Then follow the procedure in part (c) to compute the number of Type Ia SNe: NIa =
MFe,MW

MFe
=

2 × 108. Divide this by the lifetime of the Milky Way to get the average Type Ia SNe rate:

NIa/τMW = 0.02 yr−1 .
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Figure 1: Plot of the ionization fraction ne/ntot as a function of temperature for a pure hydrogen gas.

(e) Estimate the number of neutron star mergers that have occurred in a dwarf galaxy
with metallicity ∼ 10−1 that of the Milky Way, and stellar mass Mgal ∼ 106 M�. Do
we expect all dwarf galaxies to be enriched in r-process elements such as Europium?

As in part (b), first compute the total mass of r-process elements in the dwarf galaxy: Mrp,gal =
XrpMgal = 10−2 M�.

Then as in part (c), compute the number of neutron star mergers: NNSM =
Mrp,gal

Mrp
= 0.33 . We

do not expect all dwarf galaxies to be enriched in r-process elements.

3. Free electrons at low temperatures

(a) Use the Saha equation to calculate the fraction of free electrons ne/ntot for a pure
hydrogen gas. Plot your result as function of temperature. Assume ntot = 1017 cm−3

as is appropriate for the solar photosphere, where ntot is the total number of nuclei
(ionized + neutral).

The Saha equation is

nenH+

nH0

=

(
2πmekBT

h2

)3/2

e
− χH
kBT (17)

We want y = ne/(nH+ + nH0), which is simply the degree of ionization. The Saha equation can
then be written as

y2

1− y
=

1

ntot

(
2πmekBT

h2

)3/2

e
− χH
kBT (18)

This can then be solved numerically for y as a function of T using the quadratic formula (note
that y must be positive, so use the positive solution). The result is shown in Figure 1.

(b) Calculate the fraction of free electrons ne/ntot,H as a function of temperature for the
combined hydrogen + metal gas. As in (a), assume ntot,H = 1017 cm−3. Make a plot
showing the ratio of ne for part (b) to ne for part (a) as a function of temperature.
Below what temperature does the assumption of a pure hydrogen gas start to become
inaccurate for predicting ne?

Using

λ ≡
(

h2

2πmekT

)1/2

we can write Saha for hydrogen (rewriting equation 17):

nH
nH+ne

= λ3eχ1/kT (19)

4



Figure 2: Plot of the ionization fraction ne/ntot,H as a function of temperature for a metal and hydrogen
gas.

For the metal we have
nm

nm+ne
= λ3eχm/kT (20)

We also have the relations
ntot,H = nH+ + nH = 1017 (21)

ntot,m = nm+ + nH = 1011 (22)

and
nH+ + nm+ = ne (23)

Using 20 and 22 we can solve for nm+ in terms of ne only:

nm
nm+

=
ntot,m
nm+

− 1 = neλ
3eχm/kT

→ nm+ =
ntot,m

neλ4eχm/kT

We can likewise use (2) and (4) to solve for nH+:

nH+ =
ntot,H

neλ4eχ1/kT

Therefore, we can write down an expression for the electron density by (6):

ne =
ntot,m

neλ4eχm/kT
+

ntot,H
neλ4eχ1/kT

We use ne = ntot,Hy (where y is the ionization fraction we want) to rewrite this as a function of
y:

y =
ntot,m
ntot,H

1

yntot,Hλ3eχm/kT + 1
+

1

yntot,Hλ4eχ1/kT + 1

I couldn’t be bothered to actually solve this, but the person who created Figure 2 used IDL’s
FZ ROOTS.

The ratio of the ionization fractions is shown in Figure 3. This shows that metals are important
at T < 4500 K.

5



Figure 3: Ratio of ionization fractions for metal+hydrogen gas and pure hydrogen gas.
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