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1. Convection

(a) If a convective blob accelerates from zero velocity over a mixing length Λ according
to d

drvcon = |N |, find the maximum convective velocity vcon in terms of N and the
mixing length Λ. Express vcon in terms of α, γ, (∇ad −∇), ρ, and cs.

We want to solve the differential equation d
drvcon = |N | to get vcon(r). This is pretty straightfor-

ward, since we assume N is constant over a mixing length, so we find:

vcon(r) = |N |r + C (1)

To solve for the integration constant, we use the boundary condition vcon(r = 0) = 0. This
conveniently yields C = 0.

Now we want the maximum vcon, which should occur at the mixing length r = Λ. The maximum

convective velocity should therefore be vcon = |N |Λ . We can also rewrite this by plugging in

Λ = αH, N2 = g
H (∇ad −∇), and H = P/(ρg):

vcon = |N |Λ (2)

=
( g
H

)1/2

(∇ad −∇)1/2αH (3)

=

(
P

ρ

)1/2

(∇ad −∇)1/2α (4)

Recall that a polytropic equation of state is given by P = ργ , and the sound speed is given by
c2s = γP/ρ. So (P/ρ)1/2 =

√
ργ−1, and the sound speed is cs =

√
γργ−1.

Plugging this into equation (4) yields vcon = γ−1/2cs(∇ad −∇)1/2α .

(b) Express the kinetic energy flux Fcon = ρv3
con of upgoing convective blobs.

Substituting vcon from (a), the convective flux is Fcon = ργ−3/2(αcs)
3(∇ad −∇)3/2 .

(c) For α = 2, what is the value of (∇ad − ∇) required for convection to carry the Sun’s
luminosity? What is the corresponding maximum convective velocity vcon, and how
does this compare to the sound speed cs?

The energy flux going through the base of the convective zone r is F = L�
4πr2 . Setting this equal

to the convective energy flux Fcon from part (b), we can solve for (∇ad −∇):

ργ−3/2(αcs)
3(∇ad −∇)3/2 =

L�
4πr2

(5)

(∇ad −∇) =

(
L�
ρ4πr2

)2/3

γ(αcs)
−2 (6)

Substituting the given values (note that γ = 5/3 for an ideal gas and L� = 4 × 1033 erg/s is a

good value to remember), we find (∇ad −∇) = 1.2× 10−7 .

Using the expression from part (a), this corresponds to vcon = 1.1× 104 cm/s , which is much

slower than the sound speed cs = 2× 107 cm/s.
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(d) Assuming convection carries all the Sun’s luminosity, use the expression for N2 to
find the density gradient in a convection zone.

From the given equation for N2, we know that

g

[
d ln ρ

dr
+

g

c2s

]
= −N2 (7)

We can solve this for d ln ρ
dr . Plugging in N2 = g

H (∇ad − ∇), H = P/(ρg), and equation (6) for
(∇ad −∇), we find

d ln ρ

dr
=
−N2

g
− g

c2s
(8)

= − 1

H
(∇ad −∇)− g

c2s
(9)

= −ρg
P

(
L�

4πr2ρ

)2/3
γ

α2c2s
− g

c2s
(10)

Now remember that we’re using a polytropic equation of state, so c2s = γP/ρ. Substituting this
into equation (10), we find

d ln ρ

dr
= − g

c2s

[(
L�

4πr2ρc3s

)2/3
γ2

α2
+ 1

]
(11)

as expected.

For the solar values given in part (c), we find that
(

L�
4πr2ρc3s

)2/3
γ2

α2 = 2× 10−7 , which is much

smaller than 1. The first term in equation (11) can then be treated as negligible, so the density
gradient becomes d ln ρ

dr = g
c2s

. This suggests that the Sun’s density profile is not strongly dependent

on α at the convective zone.

(e) At the Sun’s surface, what is the value of (∇ad − ∇) required to carry the Sun’s
luminosity? What is the corresponding convective velocity, and how does it compare
to the sound speed? Will d ln ρ

dr depend on α near the surface of the Sun?

As in part (c), plug the given values into equation (6) to find (∇ad −∇) = 0.49 . This corresponds

to vcon = 8.7× 105 cm/s , which is larger than the sound speed cs = 8×105 cm/s. This suggests

that convection cannot carry the Sun’s luminosity at the Sun’s surface.

As in part (d), compute the first term in brackets in equation (11) using the given values. This

yields
(

L�
4πr2ρc3s

)2/3
γ2

α2 = 0.8 . This is comparable with 1, so the term depending on α in equation

(11) is not negligible. The Sun’s density profile therefore depends on α near the surface of the
Sun.

2. Fully convective cool stars

(a) Assuming a star’s envelope is convective and composed of an ideal gas with polytropic
index γ, find the temperature within the envelope.

Because the star is marginally unstable to convection, we can use the convection criterion ∇ =
∇ad. Using the definitions for ∇ and ∇ad, we can write this as

d lnT

d lnP
=

γ − 1

γ
(12)

P

T

dT/dr

dP/dr
=

γ − 1

γ
(13)
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Hydrostatic equilibrium gives us dP
dr = −Gmρr2 . (Note that we can leave m = m(r) in this equation,

or we can just recognize that the mass of the envelope is negligible to the core mass M , so just
set m(r) = M). Also, assuming an ideal gas gives us P = ρkBT

µmH
. Plugging these into equation

(13) yields

dT

dr
=

γ − 1

γ

Tρ

P

(
−GM

r2

)
(14)

= −γ − 1

γ

µmp

kB

GM

r2
(15)

Now let’s integrate to find T = T (r):∫ r

R

dT

dr
dr =

γ − 1

γ

µmp

kB
GM

∫ r

R

−dr

r2
(16)

T (r)− T (R) =
γ − 1

γ

µmp

kB
GM

(
1

r
− 1

R

)
(17)

Note that T (R) is just the surface temperature Ts, so we find that

T (r) =
γ − 1

γ

µmp

kB
GM

(
1

r
− 1

R

)
+ Ts (18)

(b) The polytropic convective envelope extends nearly all the way to the photosphere.
Use this to derive a scaling between pressure and temperature at the photosphere.

The gas is a polytrope, so P = Kργ . We want to get rid of ρ in this expression by writing it in terms
of P and T . The envelope is an ideal gas, so P = ρkBT

µmH
. This means that ρ = PµmH

kBT
∝ PT−1.

We can plug this scaling into the polytropic equation to write P as a function of T :

P ∝ P γT−γ (19)

P 1−γ ∝ T−γ (20)

P ∝ T
γ
γ−1 (21)

(c) Assuming nearly constant opacity above the photosphere, show that photospheric
pressure is Ps = 2gs

3κs
, where κs is the photospheric opacity.

Start from hydrostatic equilibrium and integrate from the surface to infinity:

dP

dr
= −gρ (22)∫ ∞

R

dP

dr
dr = −

∫ ∞
R

gρdr (23)

P (r →∞)− P (R) = −g
∫ ∞
R

ρdr (24)

Since the total mass of the star is dominated by the mass of the core M , g is roughly constant
and can be pulled out of the integral.

Then use the definition of optical depth τ =
∫∞
R
κρdr. Since we’re assuming nearly constant

opacity κ = κs above the photosphere, this yields

τ = κs

∫ ∞
R

ρdr (25)

Plug equation (25) into equation (24), noting that P (r →∞) = 0 and P (R) is the surface pressure
Ps:

Ps = τ
gs
κs

(26)
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Finally, the photospheric optical depth is τ = 2/3. Substituting this into equation (26) yields

Ps = 2gs
3κs

.

(d) Use the fact that H- opacity dominates in cool stars and has the scaling κH− ∝ T 9,
and results from parts (b) and (c), to determine a scaling between M , R, and Teff for
cool stars.

Set the results of parts (b) and (c) equal and plug in g ∝ MR−2 and κ ∝ T 9. Keep the
proportionality constant in the polytropic equation of state, since it turns out this constant (we’ll

call it K, as in P = KT
γ
γ−1 ) depends on M and R:

KT
γ
γ−1 ∝ gs

κs
(27)

KT
γ
γ−1 ∝MR−2T−9 (28)

MR−2 ∝ KT 9+ γ
γ−1 (29)

Unfortunately, K also depends on M and R, so we have to solve for it somehow. This is given in
HKT p.336, but the easiest way is to consider the central pressure and temperature. The central
pressure is roughly given by hydrostatic equilibrium:

dP

dr
∝ Mρ

r2
(30)

Pc
R
∝ M

R2

M

R3
(31)

Pc ∝M2R−4 (32)

The central temperature is given by the ideal gas law:

Tc ∝
Pc
ρ

(33)

Tc ∝MR−1 (34)

As we know from last week’s homework, the polytropic equation of state should also hold in the

center of the star, so we can solve for K using Pc = KT
γ
γ−1
c . This yields K = M−1/2R−3/2.

Now we can plug this expression for K into equation (30) to get M3/2R−1/2 ∝ T 9+ γ
γ−1 . For an

ideal gas of γ = 5/3, this is M3/2R−1/2 ∝ T 23/2 .

(e) Draw an evolutionary track for a red giant branch star on an HR diagram.

Relate L, M , and T using the fact that for a blackbody, L ∝ R2T 4. First relate L, M , and R
using the solution from part (d):

T ∝ L1/4R−1/2 ⇒M3/2R−1/2 ∝ L23/8R−23/4 ⇒ L23/8 ∝M3/2R21/4 (35)

Then get rid of R using R ∝ L1/2T−2:

L23/8 ∝M3/2L21/8T−21/2 ⇒ L1/4M3/2 ∝ T 21/2 (36)

Since M is fixed for a given star, this yields L ∝ T 42 , a near vertical track on the HR diagram.

(f) Main sequence G/K/M stars have L ∝M4. Add the lower part of the main sequence
to the HR diagram.

Instead of treating M fixed, we’ll plug the scaling relation for M ∝ L1/4 into equation (36) to

find L5/8 ∝ T 21/2 .

3. Hot massive stars

Consider a family of stars in which the opacity is dominated by Thomson (electron) scattering and in
which nuclear energy is generated by the CNO cycle.
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(a) How do opacity and energy generation depend on density and temperature?

Electron scattering opacity goes as κ = κ0 (is independent of ρ and T ).

Energy generation from the CNO cycle scales as ε = ε0ρT
17 .

(b) Find the relation between radius and mass. Also find the relation between luminosity
and mass.

Most of this was done in class, but in case you want a review of homology relations, here’s the
full derivation anyway. Start with the equations of stellar structure, plugging in the expressions
for ε and κ from part (a):

dP

dm
= − Gm

4πr4
(37)

dr

dm
= − 1

4πr4ρ
(38)

dL

dm
= ε0ρT

17 (39)

dT

dm
= − 3κ0L

64π2acr4T 3
(40)

Rewrite the dependent variables using an internal mass coordinate m = m∗

(
M
M∗

)
:

r = r∗

(
M

M∗

)a
(41)

ρ = ρ∗

(
M

M∗

)b
(42)

L = L∗

(
M

M∗

)c
(43)

T = T∗

(
M

M∗

)d
(44)

P = P∗

(
M

M∗

)e
(45)

Now rewrite the equations of stellar structure (38-41) using these new variables. Note that these
equations must hold at all masses, so we can set the exponents equal to each other:(

M

M∗

)e−1
dP∗
dm∗

= −
(
M

M∗

)1−4a
Gm∗
4πr4
∗

⇒ 4a+ e = 2 (46)(
M

M∗

)a−1
dr∗
dm∗

= −
(
M

M∗

)−b−2a
1

4πr4
∗ρ∗

⇒ 3a+ b = 1 (47)(
M

M∗

)c−1
dL∗
dm∗

=

(
M

M∗

)b+17d

ε0ρ∗T
17
∗ ⇒ c = 1 + b+ 17d (48)(

M

M∗

)d−1
dT∗
dm∗

= −
(
M

M∗

)c−4a−3d
3κ0L∗

64π2acr4
∗T

3
∗

⇒ 4d = c− 4a+ 1 (49)

Also assume ideal gas pressure support P = ρkBT
µmp

:

(
M

M∗

)e
P∗ =

(
M

M∗

)b+d
ρ∗kBT∗
µmp

⇒ e = b+ d (50)
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Write this as a matrix equation:
4 0 0 0 1
3 1 0 0 0
0 1 −1 −17 0
4 0 −1 4 0
0 1 0 1 −1



a
b
c
d
e

 =


2
1
−1
1
0

 (51)

Now, just invert this matrix to solve for (a, b, c, d, e).

Using the solutions from class, we find (a, b, c, d, e) = (4/5,−7/5, 3, 1/5,−6/5. Plugging these into

equations (42) and (44), we get the mass-radius relation R ∝M4/5 and the mass-luminosity

relation L ∝M3 . (Note that this could also be done using radiation pressure instead of gas

pressure; this would yield R ∝M19/40 and L ∝M .)

(c) Where is this family of stars on the Hertzsprung–Russell diagram?

As we know from class, these are high-mass stars with M = 10−100M�. You might already know

that these are on the upper main sequence (since they’re hot enough to have electron scattering,

but still H-burning with the CNO cycle) in the upper left part of the HR diagram.

But we can also figure out where they go by finding a relation between L and T . For a blackbody
we know L = 4πR2σT 4, so T ∝ L1/4R−1/2. Plugging in the relations from part (b), we find that
T ∝ M0.35. Since L ∝ M3, we can combine these relations and find that L ∝ T 8.57. If you plug
in a couple of numbers (using the Sun as reference), you can find that they’re on the upper part
of the main sequence.

(d) Generate MESA models. Record their radius, luminosity, and temperature early on
the main sequence, and compare to your above results.

MESA should give something like:

M/M� log(R/R�) Teff (K) log(L/L�)
10 0.649 24420 3.803
20 0.820 33490 4.694
30 0.921 38470 5.137
40 0.997 41430 5.417
60 1.109 44560 5.767

This is pretty close to what we derived in part (b), though not quite exact.

(e) Consider a universe where electrons are twice as massive. How would this affect
the mean molecular weight of stars? How would this affect the electron scattering
opacity? Derive a scaling relation between stellar radius, mass, and opacity. In this
alternate universe, how would stellar radii be affected for stars of the same mass as
our universe?

If the electron mass doubles, the mean molecular weight would increase slightly , because there’s

more mass per ionized particle—but not much because 2me is still much smaller than mp. (The
change will only be on the order of me/mp ∼ 10−5.)

The electron scattering opacity is given by κT = σT
ne
ρ . Since σT = 8π

3

(
e2

mec2

)2

, κT ∝ m−2
e .

Doubling the electron mass will therefore decrease κT by a factor of 4 .

The equation of radiative diffusion says dT/dr ∝ κρL
r2T 3 . Because we’re considering scaling relations,

we can rewrite this using Tc and R:
dT

dr
∝ κρL

R2T 3
c

(52)

We can also relate dT/dr to M using a scaling relation:

dT

dr
∼ Tc
R

(53)
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We want to get rid of Tc and L in these equations. Let’s use the Tc ∝M/R scaling (equation 35)
and the scaling relation for energy generation: dL/dm ∼ L/M ∝ ρT 17

c . Also, plug in ρ ∝M/R3.
This gives us

dT

dr
∝ κρ2MT 17

c

R2T 3
c

∝ κM3T 14
c

R8
∝ κM17

R22
(54)

dT

dr
∝ M

R2
(55)

Putting equations (55) and (56) together, we find R20 ∝ κM16, or R ∝ κ1/20M4/5. Doubling the

electron mass will therefore decrease R by a factor of 41/20=1.07 .
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