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1. The scale of the Sun

(a) Using the angular radius of the Sun and the radiant flux received at the top of the
Earth’s atmosphere, calculate the effective temperature of the Sun.

First, relate the angular radius of the Sun θ to the physical radius R:

R = a sin θ, (1)

where a is the distance from the Earth to the Sun. (Note that you can also use the small-angle
approximation sin θ ≈ θ. You’ll get basically the same answer.) Then, from conservation of energy
(i.e., inverse square law):

L = 4πa2f (2)

And from the Stefan-Boltzmann equation:

L = 4πR2σBT
4
eff (3)

Set equations (2) and (3) equal, plug in equation (1) for R and solve for Teff :

4πa2f = 4πR2σBT
4
eff (4)

a2f = (a sin θ)2σBT
4
eff (5)

Teff =

(
f

σB sin2 θ

)1/4

(6)

Plugging in given values yields Teff = 5775K .

(b) Using Venus’ orbital period of 225 days and Kepler’s laws, what is the semi-major
axis of Venus (in AU)?

Start with Kepler’s third law:

Ω2 =
G(M� +M)

a3
(7)

First, consider the Earth-Sun system, assuming that ME �M�:

Ω2
E =

GM�

a3
E

(8)

Now, ΩE can be calculated from known values (Earth’s period is 1 year) and aE is known (it’s 1
AU), so can solve for M�:

M� =
Ω2
Ea

3
E

G
(9)

Then consider the Venus-Sun system, again assuming that MV �M�:

Ω2
V =

GM�

a3
V

(10)

1



Then solve for aV , substituting equation (9) for M� and converting angular velocities to periods
(P = 2π

Ω ):

aV =

(
GM�

Ω2
V

)1/3

(11)

=

(
Ω2
Ea

3
E

Ω2
V

)1/3

(12)

=

(
PV
PE

)2/3

aE (13)

Plug in known values (PE = 365.25 days, aE = 1 AU) and given values (PV = 225 days), and

find that aV = 0.724 AU .

(c) At conjunction with the Sun, it takes astronomers on Earth 276s to detect the radio
waves that reflect off Venus. Assuming circular orbits for the Earth and Venus,
compute the distance between in 1 AU.

Note: “conjunction” = Venus is directly between Earth and the Sun. Call the distance between
Earth and Venus dV . The light takes time t to travel distance 2dV :

dV =
ct

2
= 4.14× 1012 cm (14)

From the previous problem, we can compute dV in terms of AU:

dV = aE − aV = (1− 0.724) AU = 0.276 AU (15)

Then combine equations (14) and (15) to convert AU to cm: 1 AU = 1.5× 1013 cm .

(d) Use your results above to compute the absolute mass, radius, and luminosity of the
Sun in cgs.

• Inverse square law: L� = 4πa2
Ef

Plug in aE = 1 AU = 1.5× 1013 cm and f from problem (1a).

Find that L� = 3.93× 1033 erg/s .

• Kepler’s third law: M� =
Ω2

Ea
3
E

G

Plug in known values in cgs; find that M� = 2.0× 1033 g .

• Definition of angular size: R� = aE sin θ

Plug in known values in cgs; find that R� = 6.98× 1010 cm .

2. Stars are gases

(a) Provide a quantitative relation between temperature and density of a star that in-
dicates when we can treat it as a gas, and show that it holds at the center of the
Sun.

To check if the center of the Sun can be treated as a gas, we can compare Coulomb energy to
thermal energy. The ideal gas law is reasonable when the thermal energy (∼ kBT ) is larger than
the Coulomb energy (∼ (Ze2)/r). This occurs when

kT � Ze2/r (16)

r � Ze2/kT (17)

where r is the interparticle distance and Z is the charge of the ion (Z = 1 for a gas composed
only of ionized hydrogen. By thinking of the number density n as r−3, we can write r in terms of
mass density: r = n−1/3 = (ρ/µmp)

−1/3. Then we can rewrite equation (17):

ρ� µmp(k/e
2)3T 3 (18)
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For atomic hydrogen, µ = 0.5. Plugging this in, our condition for treating a star as an ideal gas
is (in cgs units):

ρ� 1.8× 10−16T 3 (19)

The sun’s central temperature is Tc ∼ 107 K. By equation (19), we require ρc � 6× 105 g cm−3 .

Since the sun’s central density ρc is only ∼ 150 g cm−3, we may treat the sun as an ideal gas
throughout, and need not consider Coulomb interactions between particles.

(b) Use a scaling argument to determine the stellar mass at which the ideal gas assump-
tion breaks down.

Now we want to know how ρ scales with stellar mass M . (In the following derivation we only
care about approximate scaling arguments, so don’t worry about prefactors.) The internal energy
can be approximated as U ∝ kBT

µmp
M at the central temperature T . Now recall that by the virial

theorem, the internal energy is approximately the gravitational energy Ω ∝ GM2/R. Solve for
T and find that T ∝ M/R. We can then assume that all stars have roughly the same central
temperature (which is actually a good approximation for main-sequence stars), so the central
density M ∝ R. Then ρ ∝M/R3 ∝M−2, so M ∝ ρ−1/2.

Plugging in values for the Sun, we find Mlim =
(
ρlim
ρ�

)−1/2

M�. This yields a limiting mass of

M = 0.016M� , which is about the mass of brown dwarfs or giant planets (not stars!). Therefore,

we will never have to consider Coulomb interactions for main sequence stars.

3. A toy star Assume that a star obeys the density model

ρ(r) = ρc

(
1− r

R

)
. (20)

(a) Find an expression for the central density in terms of R and M .

Solve for total mass M by integrating over the density profile:

M =

∫ 2π

0

dφ

∫ π

0

sin θdθ

∫ R

0

r2ρ(r)dr (21)

= 4π

∫ R

0

ρc

(
r2 − r3

R

)
dr (22)

= 4πρc

(
R3

3
− R3

4

)
(23)

=
π

3
ρcR

3 (24)

Then solve for central density: ρc = 3M
πR3 .

(b) Find the pressure as a function of radius.

Doing the same integral as in the previous problem, we know that

m(r) =
4π

3
ρcr

3

(
1− 3r

4R

)
(25)

Now use the equation of hydrostatic equilibrium:

dP

dr
= −Gm

r2
ρ(r) (26)

= −G4π

3
ρcr

(
1− 3r

4R

)
ρc

(
1− r

R

)
(27)

= −4π

3
Gρ2

cr

(
1− 7r

4R
+

3r2

4R2

)
(28)
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Integrate equation (28) to get the total pressure:

P (r) = −4π

3
Gρ2

c

∫ (
r − 7r2

4R
+

3r3

4R2

)
dr (29)

= −4π

3
Gρ2

c

[
r2

2
− 7r3

12R
+

3r4

16R2
+ C

]
(30)

Use the zero boundary condition (P (R) = 0) to solve for the integration constant C:

P (R) = −4π

3
Gρ2

cR
2

[
1

2
− 7

12
+

3

16
+

C

R2

]
= 0 (31)

C = R2

(
−1

2
+

7

12
− 3

16

)
(32)

= − 5

48
R2 (33)

Now let’s solve for the central pressure Pc = P (r = 0):

Pc = −4π

3
Gρ2

cC (34)

=
5π

36
Gρ2

cR
2 (35)

Okay, finally we can substitute stuff into equation (30) to write the full equation for pressure:

P (r) = −4π

3
Gρ2

c

[
r2

2
− 7r3

12R
+

3r4

16R2
− 5

48
R2

]
(36)

= Pc

[
1− 24

5

( r
R

)2

+
28

5

( r
R

)3

− 9

5

( r
R

)4
]

(37)

So we find that P (r) = Pc × f
(
r
R

)
as expected.

Now plug in the answer for part (a) to get Pc as a function of M and R:

Pc =
5π

36
G

(
3M

πR3

)2

R2 (38)

We can simplify this to Pc = 5
4π

GM2

R4 .

(c) What is the central temperature Tc, assuming an ideal gas equation of state? How
does it scale with mean particle mass?

Ideal gas: P = ρkBT
µmp

Solve this for central temperature, plugging in answer from (b) for Pc and answer from (a) for ρc:

Tc =
Pcµmp

ρckB
(39)

=
5π
36GρcR

2µmp

kB
(40)

=
5π
36G

3M
πR3R

2µmp

kB
(41)

This simplifies to Tc = 5GM
12R

µmp

kB
which scales as Tc ∝ µmp . (µmp is the mean particle mass.)
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(d) Find the ratio of radiation pressure to gas pressure at the center of the star as a
function of total stellar mass in M�. At what mass does radiation pressure become
comparable to the ideal gas pressure?

Radiation pressure is given by Prad = 1
3aoT

4. The ratio at the center of the star is therefore

Prad

Pgas
=

1

3
ao

T 4
c

5
4π

GM2

R4

(42)

Then plug in Tc from part (c):

Prad

Pgas
=

1

3
ao

(
5GM
12R

µmp

kB

)4

5
4π

GM2

R4

(43)

=
125π

15552
aoG

3M2

(
µmp

kB

)4

(44)

Assuming solar composition (µ = 0.62), we can rewrite this in terms of solar masses as:

Prad

Pgas
= 7.2× 10−4

(
M
M�

)2

When Prad

Pgas
= 1, the mass of the star is M ≈ 37M� . Note that this

is not an exact result, since our formula for Tc assumes that radiation pressure is negligible.

(e) Write the total gravitational potential energy of this toy star and verify the virial
theorem.

The total gravitational potential is Ω = −
∫ Gm(r)

r dm. For simplicity’s sake, let’s convert this to
an integral over radius so we can plug in the definition of m(r) from part (b) and the definition
of ρ(r):

Ω = −
∫ R

0

Gm(r)4πrρdr (45)

= −
∫ R

0

G
4π

3
ρcr

3

(
1− 3r

4R

)
4πrρc

(
1− r

R

)
dr (46)

= −G16π2

3
ρ2
c

∫ R

0

(
r4 − 7r5

4R
+

3r6

4R2

)
dr (47)

= −G16π2

3
ρ2
c

[
R5

5
− 7R6

24R
+

3R7

28R2

]
(48)

The gravitational potential is −G 26π2

315 ρ
2
cR

5

Now let’s do math with the other side of the virial theorem, plugging in P (r) from equation (34):

−3

∫
PdV = −3

∫ 2π

0

dφ

∫ π

0

sin θdθ

∫ R

0

r2P (r)dr (49)

= 12π

∫ R

0

r2 4π

3
Gρ2

c

(
r2

2
− 7r3

12R
+

3r4

16R2
− 5

48
R2

)
dr (50)

=
48π2

3
Gρ2

c

∫ R

0

(
r4

2
− 7r5

12R
+

3r6

16R2
− 5r2

48
R2

)
dr (51)

=
48π2

3
Gρ2

c

[
R5

10
− 7R5

72
+

3R5

112
− 5R5

144

]
(52)

= −26π2

315
Gρ2

cR
5 (53)

So −3
∫
PdV = Ω , and the virial theorem is exactly satisfied.
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4. Stellar coronae

(a) Solve hydrostatic equilibrium for the density profile as a function of radius given a
density ρb at the base radius rb ≈ R.

Start with hydrostatic equilibrium and assume an ideal gas equation of state with constant tem-
perature T . Also assume that the mass of the corona is negligible compared to the mass of the
star M , so m(r) ≈M :

dP

dr
= −Gm(r)

r2
ρ(r) (54)

kBT

µmp

dρ

dr
= −GM

r2
ρ(r) (55)

dρ

dr
= −GMµmp

r2kBT
ρ(r) (56)

Equation (56) is a separable differential equation:

dρ

ρ
= −GMµmp

kBT

dr

r2
(57)

ρ(r) = Aexp

(
GMµmp

rkBT

)
(58)

Now use the given boundary condition to solve for integration constant A:

ρb = Aexp

(
GMµmp

rbkBT

)
(59)

A = ρbexp

(
−GMµmp

rbkBT

)
(60)

So the final equation is

ρ(r) = ρbexp

(
−GMµmp

rbkBT

)
exp

(
GMµmp

rkBT

)
(61)

(b) What is the pressure in the corona as r → ∞? Comment on the implications of a
low-density, low-pressure ISM surrounding the star.

As r → ∞, we find the limit ρ(r) → ρbexp
(
−GMµmp

rbkBT

)
. Since we’ve assumed an ideal gas

(P = ρkBT
µmp

, this yields a pressure P → ρbkBT
µmp

exp
(
−GMµmp

rbkBT

)
. This is finite!

Since the stellar corona is surrounded by an ISM with much lower pressure, we expect the corona
to be able to produce a stellar wind.

5. Using the MESA stellar evolution code

(a) Run the default stellar model located in mesa/star/work/. At time step 10, what is
the core temperature and surface temperature of the model?

The core temperature is log Tc = 5.48 [K], or Tc = 3.012× 105 K . The surface temperature is

Teff = 3452 K .

(b) Evolve a 1M� model up the red giant branch. Make an HR diagram and plot logL
as a function of time.

Recall that an H-R diagram should have temperature increasing from right to left. Also note that
in astronomy, log means log10 and not ln. Finally, make sure to include units!
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